## Warning: package 'lavaan' was built under R version 3.4.4
## This is lavaan 0.5-23.1097
## lavaan is BETA software! Please report any bugs.
## Warning: package 'data.table' was built under R version 3.4.2
## Warning: package 'psych' was built under R version 3.4.4
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
## Warning: package 'semPlot' was built under R version 3.4.4

### 파일 불러옹기
f2structure <- fread("F2structure.csv")
head(f2structure)
##    X1 X2 X3 X6 X7 X8
## 1:  5  4  4  5  6  6
## 2:  4  3  4  5  5  4
## 3:  3  4  2  5  5  6
## 4:  6  6  5  5  5  5
## 5:  3  3  3  4  4  3
## 6:  4  5  3  5  4  5

### 평균값, 표준편차 행 추가
mydesc <- round(rbind(apply(f2structure, 2, mean), apply(f2structure, 2, sd)),2)

### 상관계수 
mycor <- round(cor(f2structure),2)

### 앞선 결과와 행이름 추가
myresult <- rbind(mycor, mydesc)
rownames(myresult)[7:8] <- c("M", "SD")
myresult
##      X1   X2   X3   X6   X7   X8
## X1 1.00 0.42 0.52 0.25 0.20 0.27
## X2 0.42 1.00 0.52 0.28 0.25 0.33
## X3 0.52 0.52 1.00 0.28 0.25 0.35
## X6 0.25 0.28 0.28 1.00 0.50 0.60
## X7 0.20 0.25 0.25 0.50 1.00 0.50
## X8 0.27 0.33 0.35 0.60 0.50 1.00
## M  4.02 4.06 4.03 4.09 4.00 4.01
## SD 1.23 1.28 1.25 1.28 1.30 1.23

* EFA를 통한 인자(요인)구조 추정

변수들의 분포를 다변량 정규분포라고 가정하는 최대우도법(ML)을 인자추출방법으로, 잠재변수들인 인자들의 관계를시각회전의 일종인 프로맥수(promax)를 이용하여 회전시킨 탐색적 인자분석을 실시

### 2개 요인으로 분석 
myefa <- factanal(f2structure, 2, rotation="promax")     # EFA 
myefa
## 
## Call:
## factanal(x = f2structure, factors = 2, rotation = "promax")
## 
## Uniquenesses:
##    X1    X2    X3    X6    X7    X8 
## 0.591 0.574 0.348 0.406 0.576 0.395 
## 
## Loadings:
##    Factor1 Factor2
## X1          0.644 
## X2          0.613 
## X3          0.822 
## X6  0.790         
## X7  0.662         
## X8  0.751         
## 
##                Factor1 Factor2
## SS loadings      1.634   1.470
## Proportion Var   0.272   0.245
## Cumulative Var   0.272   0.517
## 
## Factor Correlations:
##         Factor1 Factor2
## Factor1   1.000   0.525
## Factor2   0.525   1.000
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 0.52 on 4 degrees of freedom.
## The p-value is 0.971
round(myefa$loadings[,], 2)
##    Factor1 Factor2
## X1   -0.01    0.64
## X2    0.07    0.61
## X3   -0.03    0.82
## X6    0.79   -0.04
## X7    0.66   -0.02
## X8    0.75    0.05

### 잠재변수별 신뢰도계수
summary(alpha(f2structure[,1:3]))            #alpha
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd
##       0.74      0.74    0.66      0.49 2.8 0.028    4  1
summary(alpha(f2structure[,4:6]))
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd
##       0.77      0.77     0.7      0.53 3.4 0.025    4 1.1
### 모형 설정<p.32>
mycfa <- "F1=~X1+X2+X3
          F2=~X6+X7+X8
          F1~~F1
          F2~~F2
          F1~~F2
          X1~~X1
          X2~~X2
          X3~~X3
          X6~~X6
          X7~~X7
          X8~~X8"

### 확인적 요인분석 
obj.mycfa <- sem(mycfa, data=f2structure)

### 분석 결과 
summary(obj.mycfa, fit.measure=TRUE, standardized=TRUE)
## lavaan (0.5-23.1097) converged normally after  30 iterations
## 
##   Number of observations                           254
## 
##   Estimator                                         ML
##   Minimum Function Test Statistic                2.686
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.953
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              428.808
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.024
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2300.311
##   Loglikelihood unrestricted model (H1)      -2298.968
## 
##   Number of free parameters                         13
##   Akaike (AIC)                                4626.621
##   Bayesian (BIC)                              4672.607
##   Sample-size adjusted Bayesian (BIC)         4631.394
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent Confidence Interval          0.000  0.000
##   P-value RMSEA <= 0.05                          0.993
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 =~                                                                 
##     X1                1.000                               0.790    0.643
##     X2                1.083    0.137    7.923    0.000    0.855    0.668
##     X3                1.241    0.152    8.155    0.000    0.980    0.786
##   F2 =~                                                                 
##     X6                1.000                               0.964    0.755
##     X7                0.869    0.098    8.883    0.000    0.837    0.646
##     X8                1.011    0.104    9.716    0.000    0.974    0.793
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   F1 ~~                                                                 
##     F2                0.406    0.079    5.135    0.000    0.533    0.533
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     F1                0.624    0.126    4.943    0.000    1.000    1.000
##     F2                0.929    0.152    6.114    0.000    1.000    1.000
##    .X1                0.884    0.102    8.696    0.000    0.884    0.586
##    .X2                0.907    0.110    8.273    0.000    0.907    0.553
##    .X3                0.593    0.107    5.547    0.000    0.593    0.382
##    .X6                0.699    0.100    7.020    0.000    0.699    0.429
##    .X7                0.980    0.107    9.132    0.000    0.980    0.583
##    .X8                0.559    0.093    6.007    0.000    0.559    0.370

### 시각화
semPaths(obj.mycfa, what="std", intercepts=F, edge.label.cex = 1,edge.color = "black", edge.width=0.1)

### CR, AVE 계산을 위한 결과 도출함수 <p.51>
myest <- standardizedsolution(obj.mycfa)        
myest
##    lhs op rhs est.std    se      z pvalue
## 1   F1 =~  X1   0.643 0.050 12.959      0
## 2   F1 =~  X2   0.668 0.049 13.751      0
## 3   F1 =~  X3   0.786 0.045 17.469      0
## 4   F2 =~  X6   0.755 0.042 18.167      0
## 5   F2 =~  X7   0.646 0.047 13.846      0
## 6   F2 =~  X8   0.793 0.040 19.703      0
## 7   F1 ~~  F1   1.000 0.000     NA     NA
## 8   F2 ~~  F2   1.000 0.000     NA     NA
## 9   F1 ~~  F2   0.533 0.065  8.247      0
## 10  X1 ~~  X1   0.586 0.064  9.180      0
## 11  X2 ~~  X2   0.553 0.065  8.522      0
## 12  X3 ~~  X3   0.382 0.071  5.395      0
## 13  X6 ~~  X6   0.429 0.063  6.836      0
## 14  X7 ~~  X7   0.583 0.060  9.673      0
## 15  X8 ~~  X8   0.370 0.064  5.797      0