Model 1

In this model you are doing a cross level interaction between teachers years of experience and gender differences. However, we are also looking at the random gender differences between schools.

m4_lme <- lme(popular ~ sex*texp, data = popula, random = ~ sex|school, method = "ML")
summary(m4_lme)
Linear mixed-effects model fit by maximum likelihood
 Data: popula 
      AIC      BIC    logLik
  4261.85 4306.657 -2122.925

Random effects:
 Formula: ~sex | school
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 0.6347377 (Intr)
sex         0.4692521 0.08  
Residual    0.6264320       

Fixed effects: popular ~ sex * texp 
                Value  Std.Error   DF   t-value p-value
(Intercept)  3.313651 0.15954654 1898 20.769180   0e+00
sex          1.329479 0.13183479 1898 10.084432   0e+00
texp         0.110229 0.01013882   98 10.872007   0e+00
sex:texp    -0.034025 0.00837995 1898 -4.060303   1e-04
 Correlation: 
         (Intr) sex    texp  
sex      -0.046              
texp     -0.909  0.042       
sex:texp  0.042 -0.908 -0.046

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.93387434 -0.64733763  0.02294381  0.53272602  3.49150352 

Number of Observations: 2000
Number of Groups: 100 

Model 2

Refit The Model In this model we are measuring the same thing as Model 1 however in this model we have changed the variable teachers years of experience to center to around zero. This model centers the covariates so basically centers the constant from every value of the variable and in this model that variable happens to be teachers experience.

m4a_lme <- lme(popular ~ sex*ctexp,
               data = popula, random = ~ sex|school, method = "ML")
summary(m4a_lme)
Linear mixed-effects model fit by maximum likelihood
 Data: popula 
      AIC      BIC    logLik
  4261.85 4306.657 -2122.925

Random effects:
 Formula: ~sex | school
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 0.6347377 (Intr)
sex         0.4692521 0.08  
Residual    0.6264320       

Fixed effects: popular ~ sex * ctexp 
                Value  Std.Error   DF  t-value p-value
(Intercept)  4.885851 0.06660875 1898 73.35149   0e+00
sex          0.844178 0.05510824 1898 15.31855   0e+00
ctexp        0.110229 0.01013882   98 10.87201   0e+00
sex:ctexp   -0.034025 0.00837995 1898 -4.06030   1e-04
 Correlation: 
          (Intr) sex    ctexp 
sex       -0.044              
ctexp     -0.006  0.000       
sex:ctexp  0.000 -0.004 -0.046

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.93387434 -0.64733763  0.02294381  0.53272602  3.49150352 

Number of Observations: 2000
Number of Groups: 100 
Model Comparison of Lecture #8 Slide 30

The two models below tell the same story and both have the same exact AIC & BIC scores, this tells us that neither model is a better fit than the other. In the second model when using Ctexp, centers this distribution making the mean around 0. What causes the different numerical values is actually the result of centering the covariate previously done in the analysis in order to control the outliers. This is done to see the effect on gender when teacher experience is set at zero.

htmlreg(list(m4_lme, m4a_lme))
Statistical models
Model 1 Model 2
(Intercept) 3.31*** 4.89***
(0.16) (0.07)
sex 1.33*** 0.84***
(0.13) (0.06)
texp 0.11***
(0.01)
sex:texp -0.03***
(0.01)
ctexp 0.11***
(0.01)
sex:ctexp -0.03***
(0.01)
AIC 4261.85 4261.85
BIC 4306.66 4306.66
Log Likelihood -2122.92 -2122.92
Num. obs. 2000 2000
Num. groups 100 100
p < 0.001, p < 0.01, p < 0.05
LS0tCnRpdGxlOiAnKlNPQyA3MTIgSE9NRVdPUksgOC5BIFJhbmRvbSBFZmZlY3QgU2xpZGVzKicKYXV0aG9yOiAiUm9iZXJ0IFBlcmV6IgpkYXRlOiAiQXByaWwgNHRoLCAyMDE4IgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgpgYGB7ciwgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeShubG1lKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KG1hZ3JpdHRyKQpsaWJyYXJ5KHRpZHlyKQpsaWJyYXJ5KGhhdmVuKQpsaWJyYXJ5KGxtZXJUZXN0KQpsaWJyYXJ5KGdncGxvdDIpCmxpYnJhcnkodGV4cmVnKQpgYGAKCmBgYHtyLCBlY2hvPUZBTFNFfQpwb3B1bGEgPC0gcmVhZF9kdGEoImh0dHBzOi8vc3RhdHMuaWRyZS51Y2xhLmVkdS9zdGF0L3N0YXRhL2V4YW1wbGVzL21sbV9tYV9ob3gvcG9wdWxhci5kdGEiKQpwb3B1bGEgJTw+JSBtdXRhdGUoY3RleHAgPSB0ZXhwIC0gbWVhbih0ZXhwKSkKYGBgCiMjIyNNb2RlbCAxIApJbiB0aGlzIG1vZGVsIHlvdSBhcmUgZG9pbmcgYSBjcm9zcyBsZXZlbCBpbnRlcmFjdGlvbiBiZXR3ZWVuIHRlYWNoZXJzIHllYXJzIG9mIGV4cGVyaWVuY2UgYW5kIGdlbmRlciBkaWZmZXJlbmNlcy4gSG93ZXZlciwgd2UgYXJlIGFsc28gbG9va2luZyBhdCB0aGUgcmFuZG9tIGdlbmRlciBkaWZmZXJlbmNlcyBiZXR3ZWVuIHNjaG9vbHMuIApgYGB7ciwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbTRfbG1lIDwtIGxtZShwb3B1bGFyIH4gc2V4KnRleHAsIGRhdGEgPSBwb3B1bGEsIHJhbmRvbSA9IH4gc2V4fHNjaG9vbCwgbWV0aG9kID0gIk1MIikKc3VtbWFyeShtNF9sbWUpCmBgYAojIyMjTW9kZWwgMgpSZWZpdCBUaGUgTW9kZWwKSW4gdGhpcyBtb2RlbCB3ZSBhcmUgbWVhc3VyaW5nIHRoZSBzYW1lIHRoaW5nIGFzIE1vZGVsIDEgaG93ZXZlciBpbiB0aGlzIG1vZGVsIHdlIGhhdmUgY2hhbmdlZCB0aGUgdmFyaWFibGUgdGVhY2hlcnMgeWVhcnMgb2YgZXhwZXJpZW5jZSB0byBjZW50ZXIgdG8gYXJvdW5kIHplcm8uIFRoaXMgbW9kZWwgY2VudGVycyB0aGUgY292YXJpYXRlcyBzbyBiYXNpY2FsbHkgY2VudGVycyB0aGUgY29uc3RhbnQgZnJvbSBldmVyeSB2YWx1ZSBvZiB0aGUgdmFyaWFibGUgYW5kIGluIHRoaXMgbW9kZWwgdGhhdCB2YXJpYWJsZSBoYXBwZW5zIHRvIGJlIHRlYWNoZXJzIGV4cGVyaWVuY2UuIApgYGB7cn0KbTRhX2xtZSA8LSBsbWUocG9wdWxhciB+IHNleCpjdGV4cCwKICAgICAgICAgICAgICAgZGF0YSA9IHBvcHVsYSwgcmFuZG9tID0gfiBzZXh8c2Nob29sLCBtZXRob2QgPSAiTUwiKQpzdW1tYXJ5KG00YV9sbWUpCmBgYAojIyMjI01vZGVsIENvbXBhcmlzb24gb2YgTGVjdHVyZSAjOCBTbGlkZSAzMAoKVGhlIHR3byBtb2RlbHMgYmVsb3cgdGVsbCB0aGUgc2FtZSBzdG9yeSBhbmQgYm90aCBoYXZlIHRoZSBzYW1lIGV4YWN0IEFJQyAmIEJJQyBzY29yZXMsIHRoaXMgdGVsbHMgdXMgdGhhdCBuZWl0aGVyIG1vZGVsIGlzIGEgYmV0dGVyIGZpdCB0aGFuIHRoZSBvdGhlci4gSW4gdGhlIHNlY29uZCBtb2RlbCB3aGVuIHVzaW5nIEN0ZXhwLCBjZW50ZXJzIHRoaXMgZGlzdHJpYnV0aW9uIG1ha2luZyB0aGUgbWVhbiBhcm91bmQgMC4gV2hhdCBjYXVzZXMgdGhlIGRpZmZlcmVudCBudW1lcmljYWwgdmFsdWVzIGlzIGFjdHVhbGx5IHRoZSByZXN1bHQgb2YgY2VudGVyaW5nIHRoZSBjb3ZhcmlhdGUgcHJldmlvdXNseSBkb25lIGluIHRoZSBhbmFseXNpcyBpbiBvcmRlciB0byBjb250cm9sIHRoZSBvdXRsaWVycy4gVGhpcyBpcyBkb25lIHRvIHNlZSB0aGUgZWZmZWN0IG9uIGdlbmRlciB3aGVuIHRlYWNoZXIgZXhwZXJpZW5jZSBpcyBzZXQgYXQgemVyby4KYGBge3IsIHJlc3VsdHM9J2FzaXMnLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9VFJVRX0KaHRtbHJlZyhsaXN0KG00X2xtZSwgbTRhX2xtZSkpCmBgYAoKCgoK