City of Chicago - Locations of Array of Things sensor nodes
array_of_things_locations_data<-read.csv("https://raw.githubusercontent.com/hovig/MSDS_CUNY/master/DATA606/Project-Proposal/array-of-things-locations-1.csv")
array_of_things_locations_data$Status<-as.character(array_of_things_locations_data$Status)
array_of_things_locations_data$Status[array_of_things_locations_data$Status=="Live"]<-"True"
array_of_things_locations_data$Status[array_of_things_locations_data$Status=="Planned"]<-"False"
status_of_things<-array_of_things_locations_data %>%
group_by(Status) %>%
summarise(count=n())
dat <- data.frame(
status = factor(status_of_things$Status, levels=status_of_things$Status),
count = status_of_things$count
)
df<-round(data.frame(
x = jitter(array_of_things_locations_data$Longitude, amount = .3),
y = jitter(array_of_things_locations_data$Latitude, amount = .3)),
digits = 2)
You should phrase your research question in a way that matches up with the scope of inference your dataset allows for.
Whats the status of plans for the Array of Things project done by the City of Chicago? And where the sensors are located?
What are the cases, and how many are there?
Each case represents a sensor. There are 41 observations in the given data set.
Describe the method of data collection.
What type of study is this (observational/experiment)?
This is an observational study.
If you collected the data, state self-collected. If not, provide a citation/link.
The data is collected by the City of Chicago and found here for more relevance:
What is the response variable, and what type is it (numerical/categorical)?
The response variable is status and is categrical.
What is the explanatory variable, and what type is it (numerical/categorival)?
The explanatory variables are the count and the geolocations are numerical.
Provide summary statistics relevant to your research question. For example, if you’re comparing means across groups provide means, SDs, sample sizes of each group. This step requires the use of R, hence a code chunk is provided below. Insert more code chunks as needed.
glimpse(array_of_things_locations_data)
## Observations: 41
## Variables: 8
## $ Name <fct> Ashland Av - Division St , Wabansia - Milwaukee,...
## $ Location.Type <fct> CDOT Placemaking Project, CDOT Placemaking Proje...
## $ Category <fct> Urban Placemaking, Urban Placemaking, Urban Plac...
## $ Notes <fct> , , , , , , , , , , , single node, Single node w...
## $ Status <chr> "False", "False", "False", "False", "False", "Fa...
## $ Latitude <dbl> 41.90351, 41.91235, 41.91409, 41.89200, 41.83866...
## $ Longitude <dbl> -87.66716, -87.68214, -87.68302, -87.61164, -87....
## $ Location <fct> (41.9035068, -87.6671648), (41.9123537, -87.6821...
kable(status_of_things)
| Status | count |
|---|---|
| False | 29 |
| True | 12 |
ggplot(data=dat, aes(x=status, y=count, fill=time)) +
geom_bar(colour="black", fill="#DD8888", width=.8, stat="identity") +
guides(fill=FALSE) +
xlab("Status type") + ylab("Status count per type") +
ggtitle("Chicago's planning status")
ggmap(map, extent = 'device')
## Warning: `panel.margin` is deprecated. Please use `panel.spacing` property
## instead