Comparision between two Random Interaction Models

The model’s below, used in Professor Song’s lecture, estimate cross-level interaction of student popularity level by gender and teachers experience using two different methods. The models are indentical models despite having a numerical difference.

library(nlme)
library(dplyr)
library(magrittr)
library(tidyr)
library(haven)
library(lmerTest)
library(ggplot2)
library(texreg)
popula <- read_dta("https://stats.idre.ucla.edu/stat/stata/examples/mlm_ma_hox/popular.dta")

Model 1 - Cross-level Interaction

m4_lme <- lme(popular ~ sex*texp, data = popula, random = ~ sex|school, method = "ML")
summary(m4_lme)
Linear mixed-effects model fit by maximum likelihood
 Data: popula 
      AIC      BIC    logLik
  4261.85 4306.657 -2122.925

Random effects:
 Formula: ~sex | school
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 0.6347377 (Intr)
sex         0.4692521 0.08  
Residual    0.6264320       

Fixed effects: popular ~ sex * texp 
                Value  Std.Error   DF   t-value p-value
(Intercept)  3.313651 0.15954654 1898 20.769180   0e+00
sex          1.329479 0.13183479 1898 10.084432   0e+00
texp         0.110229 0.01013882   98 10.872007   0e+00
sex:texp    -0.034025 0.00837995 1898 -4.060303   1e-04
 Correlation: 
         (Intr) sex    texp  
sex      -0.046              
texp     -0.909  0.042       
sex:texp  0.042 -0.908 -0.046

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.93387434 -0.64733763  0.02294381  0.53272602  3.49150352 

Number of Observations: 2000
Number of Groups: 100 

This cross level interaction model evaluates student’s perception of populatiry level(between 0-10) by gender and teachers expereience while finding association of school and sex from the data. By adding the interaction, we were able to now measure on different levels. There is a clear interaction between gender and texp (teachers exprience). On average the popularity index for boys with a teacher of 0 expreience is 3.31. For every 1 year increase in experience of the teacher, boys average perception of popularility increases by .11 Whereas the other counterfactual, girls on average perceieve their popularity around 4.643 when the teacher has 0 years of experience. With a increase in teachers experience, females popularity perception decreases by .034. The random effect in this model suggests that on average the popularity perception for a random school is .6347 higher than the fixed effect. For females it is ,4692 higher.

Model 2 - Re-fit the Model

popula %<>% mutate(ctexp = texp - mean(texp))
m4a_lme <- lme(popular ~ sex*ctexp, data = popula, random = ~ sex|school, method = "ML")
summary(m4a_lme)
Linear mixed-effects model fit by maximum likelihood
 Data: popula 
      AIC      BIC    logLik
  4261.85 4306.657 -2122.925

Random effects:
 Formula: ~sex | school
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev    Corr  
(Intercept) 0.6347377 (Intr)
sex         0.4692521 0.08  
Residual    0.6264320       

Fixed effects: popular ~ sex * ctexp 
                Value  Std.Error   DF  t-value p-value
(Intercept)  4.885851 0.06660875 1898 73.35149   0e+00
sex          0.844178 0.05510824 1898 15.31855   0e+00
ctexp        0.110229 0.01013882   98 10.87201   0e+00
sex:ctexp   -0.034025 0.00837995 1898 -4.06030   1e-04
 Correlation: 
          (Intr) sex    ctexp 
sex       -0.044              
ctexp     -0.006  0.000       
sex:ctexp  0.000 -0.004 -0.046

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max 
-2.93387434 -0.64733763  0.02294381  0.53272602  3.49150352 

Number of Observations: 2000
Number of Groups: 100 

The second model analyses the same interaction with a different apprach. We see here that by centering the covaiates we created a new center for the variable making the mean the starting point 0. In other words, sometimes you need to center your covariates. The major difference between ctexp and texp is assinging a better poisiton for techer exp. After centering, there is a ease in our interpretation and we reestimate the model. Anything below the mean will fall below 0 and those above will be higher than 0. On average, males perception of popularity is 4.88 when teachers experience is averaged whereas females percepton of populatiry is 5.724 when teachers experience is averaged. As teacher’s experience increases by 1 year, boys popularity increases by .11 while females perception decreases by .03.

Comparison of the 2 models

htmlreg(list(m4_lme, m4a_lme))
Statistical models
Model 1 Model 2
(Intercept) 3.31*** 4.89***
(0.16) (0.07)
sex 1.33*** 0.84***
(0.13) (0.06)
texp 0.11***
(0.01)
sex:texp -0.03***
(0.01)
ctexp 0.11***
(0.01)
sex:ctexp -0.03***
(0.01)
AIC 4261.85 4261.85
BIC 4306.66 4306.66
Log Likelihood -2122.92 -2122.92
Num. obs. 2000 2000
Num. groups 100 100
p < 0.001, p < 0.01, p < 0.05

The two models tell similar stories while examining the interaction of teachers experience with gender to see the influence both variables have on average perception of popularity between males and females. The main difference between both models are the fixed effect calculations. This difference is seen in model 2 because we cnetered the variable teachers experience. We do this to control for outliers and to see how gender falls when the mean of teachers experience is to be a starting point.

Despite some numerical differences in the intercepts and slopes, the story line of the interaction of teachers experience and gender is the same which demostrates that a random school’s gender difference has teh same difference in both models. Both models are a good fit as they both have the same BIC and AIC.

LS0tCnRpdGxlOiAiSG9tZXdvcmsgOCAtIEZpcnN0IENvbXBvbmVudCIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyMjQ29tcGFyaXNpb24gYmV0d2VlbiB0d28gUmFuZG9tIEludGVyYWN0aW9uIE1vZGVscwojIyMjIyMjIFRoZSBtb2RlbCdzIGJlbG93LCB1c2VkIGluIFByb2Zlc3NvciBTb25nJ3MgbGVjdHVyZSwgZXN0aW1hdGUgY3Jvc3MtbGV2ZWwgaW50ZXJhY3Rpb24gb2Ygc3R1ZGVudCBwb3B1bGFyaXR5IGxldmVsIGJ5IGdlbmRlciBhbmQgdGVhY2hlcnMgZXhwZXJpZW5jZSB1c2luZyB0d28gZGlmZmVyZW50IG1ldGhvZHMuIFRoZSBtb2RlbHMgYXJlIGluZGVudGljYWwgbW9kZWxzIGRlc3BpdGUgaGF2aW5nIGEgbnVtZXJpY2FsIGRpZmZlcmVuY2UuCmBgYHtyfQpsaWJyYXJ5KG5sbWUpCmxpYnJhcnkoZHBseXIpCmxpYnJhcnkobWFncml0dHIpCmxpYnJhcnkodGlkeXIpCmxpYnJhcnkoaGF2ZW4pCmxpYnJhcnkobG1lclRlc3QpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeSh0ZXhyZWcpCmBgYApgYGB7cn0KcG9wdWxhIDwtIHJlYWRfZHRhKCJodHRwczovL3N0YXRzLmlkcmUudWNsYS5lZHUvc3RhdC9zdGF0YS9leGFtcGxlcy9tbG1fbWFfaG94L3BvcHVsYXIuZHRhIikKYGBgCgojIyMgTW9kZWwgMSAtIENyb3NzLWxldmVsIEludGVyYWN0aW9uCmBgYHtyfQptNF9sbWUgPC0gbG1lKHBvcHVsYXIgfiBzZXgqdGV4cCwgZGF0YSA9IHBvcHVsYSwgcmFuZG9tID0gfiBzZXh8c2Nob29sLCBtZXRob2QgPSAiTUwiKQpzdW1tYXJ5KG00X2xtZSkKYGBgCiMjIyMjIyNUaGlzIGNyb3NzIGxldmVsIGludGVyYWN0aW9uIG1vZGVsIGV2YWx1YXRlcyBzdHVkZW50J3MgcGVyY2VwdGlvbiBvZiBwb3B1bGF0aXJ5IGxldmVsKGJldHdlZW4gMC0xMCkgYnkgZ2VuZGVyIGFuZCB0ZWFjaGVycyBleHBlcmVpZW5jZSB3aGlsZSBmaW5kaW5nIGFzc29jaWF0aW9uIG9mIHNjaG9vbCBhbmQgc2V4IGZyb20gdGhlIGRhdGEuIEJ5IGFkZGluZyB0aGUgaW50ZXJhY3Rpb24sIHdlIHdlcmUgYWJsZSB0byBub3cgbWVhc3VyZSBvbiBkaWZmZXJlbnQgbGV2ZWxzLiBUaGVyZSBpcyBhIGNsZWFyIGludGVyYWN0aW9uIGJldHdlZW4gZ2VuZGVyIGFuZCB0ZXhwICh0ZWFjaGVycyBleHByaWVuY2UpLiBPbiBhdmVyYWdlIHRoZSBwb3B1bGFyaXR5IGluZGV4IGZvciBib3lzIHdpdGggYSB0ZWFjaGVyIG9mIDAgZXhwcmVpZW5jZSBpcyAzLjMxLiBGb3IgZXZlcnkgMSB5ZWFyIGluY3JlYXNlIGluIGV4cGVyaWVuY2Ugb2YgdGhlIHRlYWNoZXIsIGJveXMgYXZlcmFnZSBwZXJjZXB0aW9uIG9mIHBvcHVsYXJpbGl0eSBpbmNyZWFzZXMgYnkgLjExIFdoZXJlYXMgdGhlIG90aGVyIGNvdW50ZXJmYWN0dWFsLCBnaXJscyBvbiBhdmVyYWdlIHBlcmNlaWV2ZSB0aGVpciBwb3B1bGFyaXR5IGFyb3VuZCA0LjY0MyB3aGVuIHRoZSB0ZWFjaGVyIGhhcyAwIHllYXJzIG9mIGV4cGVyaWVuY2UuIFdpdGggYSBpbmNyZWFzZSBpbiB0ZWFjaGVycyBleHBlcmllbmNlLCBmZW1hbGVzIHBvcHVsYXJpdHkgcGVyY2VwdGlvbiBkZWNyZWFzZXMgYnkgLjAzNC4gVGhlIHJhbmRvbSBlZmZlY3QgaW4gdGhpcyBtb2RlbCBzdWdnZXN0cyB0aGF0IG9uIGF2ZXJhZ2UgdGhlIHBvcHVsYXJpdHkgcGVyY2VwdGlvbiBmb3IgYSByYW5kb20gc2Nob29sIGlzIC42MzQ3IGhpZ2hlciB0aGFuIHRoZSBmaXhlZCBlZmZlY3QuIEZvciBmZW1hbGVzIGl0IGlzICw0NjkyIGhpZ2hlci4KCgojIyMgTW9kZWwgMiAtIFJlLWZpdCB0aGUgTW9kZWwKYGBge3J9CnBvcHVsYSAlPD4lIG11dGF0ZShjdGV4cCA9IHRleHAgLSBtZWFuKHRleHApKQpgYGAKYGBge3J9Cm00YV9sbWUgPC0gbG1lKHBvcHVsYXIgfiBzZXgqY3RleHAsIGRhdGEgPSBwb3B1bGEsIHJhbmRvbSA9IH4gc2V4fHNjaG9vbCwgbWV0aG9kID0gIk1MIikKc3VtbWFyeShtNGFfbG1lKQpgYGAKIyMjIyMjI1RoZSBzZWNvbmQgbW9kZWwgYW5hbHlzZXMgdGhlIHNhbWUgaW50ZXJhY3Rpb24gd2l0aCBhIGRpZmZlcmVudCBhcHByYWNoLiBXZSBzZWUgaGVyZSB0aGF0IGJ5IGNlbnRlcmluZyB0aGUgY292YWlhdGVzIHdlIGNyZWF0ZWQgYSBuZXcgY2VudGVyIGZvciB0aGUgdmFyaWFibGUgbWFraW5nIHRoZSBtZWFuIHRoZSBzdGFydGluZyBwb2ludCAwLiBJbiBvdGhlciB3b3Jkcywgc29tZXRpbWVzIHlvdSBuZWVkIHRvIGNlbnRlciB5b3VyIGNvdmFyaWF0ZXMuIFRoZSBtYWpvciBkaWZmZXJlbmNlIGJldHdlZW4gY3RleHAgYW5kIHRleHAgaXMgYXNzaW5naW5nIGEgYmV0dGVyIHBvaXNpdG9uIGZvciB0ZWNoZXIgZXhwLiBBZnRlciBjZW50ZXJpbmcsIHRoZXJlIGlzIGEgZWFzZSBpbiBvdXIgaW50ZXJwcmV0YXRpb24gYW5kIHdlIHJlZXN0aW1hdGUgdGhlIG1vZGVsLiBBbnl0aGluZyBiZWxvdyB0aGUgbWVhbiB3aWxsIGZhbGwgYmVsb3cgMCBhbmQgdGhvc2UgYWJvdmUgd2lsbCBiZSBoaWdoZXIgdGhhbiAwLiBPbiBhdmVyYWdlLCBtYWxlcyBwZXJjZXB0aW9uIG9mIHBvcHVsYXJpdHkgaXMgNC44OCB3aGVuIHRlYWNoZXJzIGV4cGVyaWVuY2UgaXMgYXZlcmFnZWQgd2hlcmVhcyBmZW1hbGVzIHBlcmNlcHRvbiBvZiBwb3B1bGF0aXJ5IGlzIDUuNzI0IHdoZW4gdGVhY2hlcnMgZXhwZXJpZW5jZSBpcyBhdmVyYWdlZC4gQXMgdGVhY2hlcidzIGV4cGVyaWVuY2UgaW5jcmVhc2VzIGJ5IDEgeWVhciwgYm95cyBwb3B1bGFyaXR5IGluY3JlYXNlcyBieSAuMTEgd2hpbGUgZmVtYWxlcyBwZXJjZXB0aW9uIGRlY3JlYXNlcyBieSAuMDMuIAoKCiMjI0NvbXBhcmlzb24gb2YgdGhlIDIgbW9kZWxzCmBgYHtyIHJlc3VsdHM9J2FzaXMnfQpodG1scmVnKGxpc3QobTRfbG1lLCBtNGFfbG1lKSkKYGBgCiMjIyMjIyNUaGUgdHdvIG1vZGVscyB0ZWxsIHNpbWlsYXIgc3RvcmllcyB3aGlsZSBleGFtaW5pbmcgdGhlIGludGVyYWN0aW9uIG9mIHRlYWNoZXJzIGV4cGVyaWVuY2Ugd2l0aCBnZW5kZXIgdG8gc2VlIHRoZSBpbmZsdWVuY2UgYm90aCB2YXJpYWJsZXMgaGF2ZSBvbiBhdmVyYWdlIHBlcmNlcHRpb24gb2YgcG9wdWxhcml0eSBiZXR3ZWVuIG1hbGVzIGFuZCBmZW1hbGVzLiBUaGUgbWFpbiBkaWZmZXJlbmNlIGJldHdlZW4gYm90aCBtb2RlbHMgYXJlIHRoZSBmaXhlZCBlZmZlY3QgY2FsY3VsYXRpb25zLiBUaGlzIGRpZmZlcmVuY2UgaXMgc2VlbiBpbiBtb2RlbCAyIGJlY2F1c2Ugd2UgY25ldGVyZWQgdGhlIHZhcmlhYmxlIHRlYWNoZXJzIGV4cGVyaWVuY2UuIFdlIGRvIHRoaXMgdG8gY29udHJvbCBmb3Igb3V0bGllcnMgYW5kIHRvIHNlZSBob3cgZ2VuZGVyIGZhbGxzIHdoZW4gdGhlIG1lYW4gb2YgdGVhY2hlcnMgZXhwZXJpZW5jZSBpcyB0byBiZSBhIHN0YXJ0aW5nIHBvaW50LgoKIyMjIyMjI0Rlc3BpdGUgc29tZSBudW1lcmljYWwgZGlmZmVyZW5jZXMgaW4gdGhlIGludGVyY2VwdHMgYW5kIHNsb3BlcywgdGhlIHN0b3J5IGxpbmUgb2YgdGhlIGludGVyYWN0aW9uIG9mIHRlYWNoZXJzIGV4cGVyaWVuY2UgYW5kIGdlbmRlciBpcyB0aGUgc2FtZSB3aGljaCBkZW1vc3RyYXRlcyB0aGF0IGEgcmFuZG9tIHNjaG9vbCdzIGdlbmRlciBkaWZmZXJlbmNlIGhhcyB0ZWggc2FtZSBkaWZmZXJlbmNlIGluIGJvdGggbW9kZWxzLiBCb3RoIG1vZGVscyBhcmUgYSBnb29kIGZpdCBhcyB0aGV5IGJvdGggaGF2ZSB0aGUgc2FtZSBCSUMgYW5kIEFJQy4KCgo=