1: Introduction

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

2: Synopsis

The basic goal of This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) Storm Database and explore the effects of severe weather events on both population and economy. The database covers the time period between 1950 and November 2011.

The following analysis investigates which types of severe weather events are most harmful on:

1. Health (injuries and fatalities) 
2. Property and crops (economic consequences)

3: Data Processing

library("data.table")
library("ggplot2")

storm_data_frame <- read.csv("StormData.csv.bz2")
storm_data_table <- as.data.table(storm_data_frame)

colnames(storm_data_table)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"
cols2Remove <- colnames(storm_data_table[, !c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")])

storm_data_table[, c(cols2Remove) := NULL]

storm_data_table <- storm_data_table[(EVTYPE != "?" & (INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0)), c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP") ]

cols <- c("PROPDMGEXP", "CROPDMGEXP")
storm_data_table[,  (cols) := c(lapply(.SD, toupper)), .SDcols = cols]

propDmgKey <-  c("\"\"" = 10^0, "-" = 10^0, "+" = 10^0, "0" = 10^0, "1" = 10^1, "2" = 10^2, "3" = 10^3, "4" = 10^4, "5" = 10^5, "6" = 10^6, "7" = 10^7, "8" = 10^8, "9" = 10^9, "H" = 10^2, "K" = 10^3, "M" = 10^6, "B" = 10^9)
cropDmgKey <-  c("\"\"" = 10^0, "?" = 10^0, "0" = 10^0, "K" = 10^3, "M" = 10^6, "B" = 10^9)

storm_data_table[, PROPDMGEXP := propDmgKey[as.character(storm_data_table[,PROPDMGEXP])]]
storm_data_table[is.na(PROPDMGEXP), PROPDMGEXP := 10^0 ]

storm_data_table[, CROPDMGEXP := cropDmgKey[as.character(storm_data_table[,CROPDMGEXP])] ]
storm_data_table[is.na(CROPDMGEXP), CROPDMGEXP := 10^0 ]

storm_data_table <- storm_data_table[, .(EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, propCost = PROPDMG * PROPDMGEXP, CROPDMG, CROPDMGEXP, cropCost = CROPDMG * CROPDMGEXP)]

totalCostDT <- storm_data_table[, .(propCost = sum(propCost), cropCost = sum(cropCost), Total_Cost = sum(propCost) + sum(cropCost)), by = .(EVTYPE)]
totalCostDT <- totalCostDT[order(-Total_Cost), ]
totalCostDT <- totalCostDT[1:10, ]

head(totalCostDT, 5)
##               EVTYPE     propCost   cropCost   Total_Cost
## 1:             FLOOD 144657709807 5661968450 150319678257
## 2: HURRICANE/TYPHOON  69305840000 2607872800  71913712800
## 3:           TORNADO  56947380677  414953270  57362333947
## 4:       STORM SURGE  43323536000       5000  43323541000
## 5:              HAIL  15735267513 3025954473  18761221986
totalInjuriesDT <- storm_data_table[, .(FATALITIES = sum(FATALITIES), INJURIES = sum(INJURIES), totals = sum(FATALITIES) + sum(INJURIES)), by = .(EVTYPE)]
totalInjuriesDT <- totalInjuriesDT[order(-FATALITIES), ]
totalInjuriesDT <- totalInjuriesDT[1:10, ]

head(totalInjuriesDT, 5)
##            EVTYPE FATALITIES INJURIES totals
## 1:        TORNADO       5633    91346  96979
## 2: EXCESSIVE HEAT       1903     6525   8428
## 3:    FLASH FLOOD        978     1777   2755
## 4:           HEAT        937     2100   3037
## 5:      LIGHTNING        816     5230   6046

4: Results

bad_stuff <- melt(totalInjuriesDT, id.vars="EVTYPE", variable.name = "bad_thing")
head(bad_stuff, 5)
##            EVTYPE  bad_thing value
## 1:        TORNADO FATALITIES  5633
## 2: EXCESSIVE HEAT FATALITIES  1903
## 3:    FLASH FLOOD FATALITIES   978
## 4:           HEAT FATALITIES   937
## 5:      LIGHTNING FATALITIES   816
healthChart <- ggplot(bad_stuff, aes(x=reorder(EVTYPE, -value), y=value))
healthChart = healthChart + geom_bar(stat="identity", aes(fill=bad_thing), position="dodge")
healthChart = healthChart + ylab("Frequency Count") 
healthChart = healthChart + xlab("Event Type") 
healthChart = healthChart + theme(axis.text.x = element_text(angle=45, hjust=1))
healthChart = healthChart + ggtitle("Top 10 US Killers") + theme(plot.title = element_text(hjust = 0.5))

healthChart

econ_consequences <- melt(totalCostDT, id.vars="EVTYPE", variable.name = "Damage_Type")
head(econ_consequences, 5)
##               EVTYPE Damage_Type        value
## 1:             FLOOD    propCost 144657709807
## 2: HURRICANE/TYPHOON    propCost  69305840000
## 3:           TORNADO    propCost  56947380677
## 4:       STORM SURGE    propCost  43323536000
## 5:              HAIL    propCost  15735267513
econChart <- ggplot(econ_consequences, aes(x=reorder(EVTYPE, -value), y=value))
econChart = econChart + geom_bar(stat="identity", aes(fill=Damage_Type), position="dodge")
econChart = econChart + ylab("Cost (dollars)") 
econChart = econChart + xlab("Event Type") 
econChart = econChart + theme(axis.text.x = element_text(angle=45, hjust=1))
econChart = econChart + ggtitle("Top 10 US Storm Events causing Economic Consequences") + theme(plot.title = element_text(hjust = 0.5))

econChart