We can convert an annual transition matrix, M, into a monthly transition matrix, x, using two approaches:
Suppose you have the following annual transition matrix from a credit rating agency like Moody’s or S&P.
rc <- c("AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D")
M <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01,
0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01,
0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06,
0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18,
0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06,
0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20,
0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79,
0, 0, 0, 0, 0, 0, 0, 100
)/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)
M
## AAA AA A BBB BB B CCC D
## AAA 0.9081 0.0833 0.0068 0.0006 0.0008 0.0002 0.0001 0.0001
## AA 0.0070 0.9065 0.0779 0.0064 0.0006 0.0013 0.0002 0.0001
## A 0.0009 0.0227 0.9105 0.0552 0.0074 0.0026 0.0001 0.0006
## BBB 0.0002 0.0033 0.0595 0.8593 0.0530 0.0117 0.0112 0.0018
## BB 0.0003 0.0014 0.0067 0.0773 0.8053 0.0884 0.0100 0.0106
## B 0.0001 0.0011 0.0024 0.0043 0.0648 0.8346 0.0407 0.0520
## CCC 0.0021 0.0000 0.0022 0.0130 0.0238 0.1124 0.6486 0.1979
## D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
The defining feature of M is each each row sums to 1.
apply(M, 1, sum)
## AAA AA A BBB BB B CCC D
## 1 1 1 1 1 1 1 1
The second defining feature of M is that all elements are between 0 and 1.
all(M >= 0 & M <= 1)
## [1] TRUE
There are two approaches in R to find the matrix root of a square matrix. First, use the expm package. Alternatively, you could use the pracma package.
The first approach was found here.
library(expm)
monthly.TM.expm <- expm((1/12)*logm(M))
dimnames(monthly.TM.expm) = list(rc, rc)
round(monthly.TM.expm, 5)
## AAA AA A BBB BB B CCC D
## AAA 0.99197 0.00759 0.00032 0.00002 0.00007 0.00001 0.00001 0.00001
## AA 0.00064 0.99174 0.00708 0.00039 0.00002 0.00011 0.00002 0.00000
## A 0.00007 0.00206 0.99198 0.00513 0.00056 0.00019 -0.00003 0.00005
## BBB 0.00001 0.00024 0.00554 0.98706 0.00518 0.00081 0.00117 0.00000
## BB 0.00003 0.00011 0.00039 0.00762 0.98156 0.00878 0.00084 0.00067
## B 0.00000 0.00010 0.00020 0.00011 0.00645 0.98444 0.00446 0.00424
## CCC 0.00022 -0.00002 0.00017 0.00129 0.00217 0.01230 0.96420 0.01967
## D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
The second approach is to use the pracma package. The rootm function finds the p-th matrix root using a complex integral.
library(pracma)
monthly.TM.pracma <- rootm(M, p=12, kmax=20, tol=1e-10)
round(monthly.TM.pracma$B,5)
## AAA AA A BBB BB B CCC D
## AAA 0.99197 0.00759 0.00032 0.00002 0.00007 0.00001 0.00001 0.00001
## AA 0.00064 0.99174 0.00708 0.00039 0.00002 0.00011 0.00002 0.00000
## A 0.00007 0.00206 0.99198 0.00513 0.00056 0.00019 -0.00003 0.00005
## BBB 0.00001 0.00024 0.00554 0.98706 0.00518 0.00081 0.00117 0.00000
## BB 0.00003 0.00011 0.00039 0.00762 0.98156 0.00878 0.00084 0.00067
## B 0.00000 0.00010 0.00020 0.00011 0.00645 0.98444 0.00446 0.00424
## CCC 0.00022 -0.00002 0.00017 0.00129 0.00217 0.01230 0.96420 0.01967
## D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
Does \(x^n = M\)?
M.expm <- monthly.TM.expm %^% 12
M.pracma <- monthly.TM.pracma$B %^% 12
round(M.expm, 5) == round(M, 5)
## AAA AA A BBB BB B CCC D
## AAA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## AA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## A TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## BBB TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## BB TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## B TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## CCC TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## D TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
round(M.pracma, 5) == round(M, 5)
## AAA AA A BBB BB B CCC D
## AAA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## AA TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## A TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## BBB TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## BB TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## B TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## CCC TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## D TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Does the row sum equal 1?
apply(monthly.TM.expm, 1, sum)
## AAA AA A BBB BB B CCC D
## 1 1 1 1 1 1 1 1
apply(monthly.TM.pracma$B, 1, sum)
## AAA AA A BBB BB B CCC D
## 1 1 1 1 1 1 1 1
Unfortunately, some elements of \(x\) are negative.
all(monthly.TM.expm >= 0, monthly.TM.expm <= 1)
## [1] FALSE
all(monthly.TM.pracma$B >= 0, monthly.TM.pracma$B <= 1)
## [1] FALSE
The ctmcd package finds a valid transition matrix (i.e., rows sum to 1 and all elements are between 0 and 1) where \(x^n \approx M\). You can find the package documentation here.
The code below uses the quasi-optimization of the generator (QOG) approach from Kreinin and Sidelnikova (2001).
library(ctmcd)
monthly.g.qo <- gm(monthly.TM.pracma$B, te=1, method="QO")
monthly.TM.qo <- expm(monthly.g.qo$par)
round(monthly.TM.qo, 5)
## AAA AA A BBB BB B CCC D
## AAA 0.99197 0.00759 0.00032 0.00002 0.00007 0.00001 0.00001 0.00000
## AA 0.00064 0.99174 0.00708 0.00039 0.00002 0.00011 0.00002 0.00000
## A 0.00007 0.00205 0.99197 0.00512 0.00055 0.00019 0.00000 0.00004
## BBB 0.00001 0.00024 0.00553 0.98705 0.00518 0.00080 0.00117 0.00002
## BB 0.00000 0.00012 0.00040 0.00763 0.98156 0.00878 0.00084 0.00068
## B 0.00000 0.00010 0.00020 0.00011 0.00645 0.98444 0.00446 0.00424
## CCC 0.00022 0.00000 0.00017 0.00129 0.00216 0.01230 0.96420 0.01966
## D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
apply(monthly.TM.qo, 1, sum)
## AAA AA A BBB BB B CCC
## 1.0000001 0.9999999 0.9999999 1.0000002 1.0000001 0.9999999 1.0000000
## D
## 1.0000000
all(monthly.TM.qo >= 0, monthly.TM.qo <= 1)
## [1] TRUE
There is no free lunch. Here are the differences between M and M.qo.
M.qo <- monthly.TM.qo %^% 12
round(M - M.qo, 5)
## AAA AA A BBB BB B CCC D
## AAA -0.00001 -0.00001 -1e-05 -1e-05 -1e-05 -1e-05 -0.00001 0.00008
## AA 0.00000 0.00000 0e+00 0e+00 0e+00 0e+00 -0.00002 0.00002
## A 0.00006 0.00006 6e-05 6e-05 5e-05 3e-05 -0.00035 0.00001
## BBB 0.00003 0.00002 3e-05 3e-05 2e-05 3e-05 0.00001 -0.00017
## BB 0.00027 -0.00003 -4e-05 -4e-05 -4e-05 -4e-05 -0.00003 -0.00005
## B 0.00004 -0.00001 0e+00 0e+00 0e+00 0e+00 0.00000 0.00000
## CCC 0.00004 -0.00023 2e-05 3e-05 3e-05 4e-05 0.00003 0.00004
## D 0.00000 0.00000 0e+00 0e+00 0e+00 0e+00 0.00000 0.00000
With enough rounding, \(x^n \approx M\).
round(M - M.qo, 3)
## AAA AA A BBB BB B CCC D
## AAA 0 0 0 0 0 0 0 0
## AA 0 0 0 0 0 0 0 0
## A 0 0 0 0 0 0 0 0
## BBB 0 0 0 0 0 0 0 0
## BB 0 0 0 0 0 0 0 0
## B 0 0 0 0 0 0 0 0
## CCC 0 0 0 0 0 0 0 0
## D 0 0 0 0 0 0 0 0
For documention purposes, here is the monthly transition matrix.
library(printr)
knitr::kable(monthly.TM.qo)
| AAA | AA | A | BBB | BB | B | CCC | D | |
|---|---|---|---|---|---|---|---|---|
| AAA | 0.9919728 | 0.0075893 | 0.0003208 | 0.0000228 | 0.0000740 | 0.0000103 | 0.0000099 | 0.0000002 |
| AA | 0.0006352 | 0.9917447 | 0.0070829 | 0.0003937 | 0.0000161 | 0.0001106 | 0.0000162 | 0.0000005 |
| A | 0.0000688 | 0.0020519 | 0.9919737 | 0.0051237 | 0.0005509 | 0.0001866 | 0.0000037 | 0.0000406 |
| BBB | 0.0000110 | 0.0002383 | 0.0055333 | 0.9870533 | 0.0051785 | 0.0008034 | 0.0011671 | 0.0000153 |
| BB | 0.0000002 | 0.0001161 | 0.0003976 | 0.0076258 | 0.9815602 | 0.0087820 | 0.0008430 | 0.0006752 |
| B | 0.0000005 | 0.0000981 | 0.0001967 | 0.0001110 | 0.0064470 | 0.9844436 | 0.0044632 | 0.0042398 |
| CCC | 0.0002179 | 0.0000019 | 0.0001663 | 0.0012903 | 0.0021619 | 0.0122954 | 0.9642013 | 0.0196650 |
| D | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.0000000 |