Orientador: Eduardo Faerstein (IMS/UERJ)
library(knitr)
library(epiDisplay)
library(rworldmap)
library(igraph)
library(networkD3)
library(timevis)
```
# dataset = read.table(file.choose(), header = TRUE, sep = ";")
setwd("C:/Users/Ronaldo Alves/Desktop/TESE_Ronaldo_2018/capitulo_2_artigo_revisao_IJE 2018/apendices_cap_2/script_analise")
dataset = read.table("database_review_all_data_12jan18.csv", header = TRUE, sep = ";")
map = read.table("freq_all_affiliation.csv", sep=";", h=T)
Analise de confiabilidade: amostra de 15% da bibliografia
{set.seed(2018)
data = dataset[sample(1:nrow(dataset), size = 0.15*nrow(dataset)), ]
list(sort(data$UT))}
## [[1]]
## [1] 2 14 18 20 27 38 42 53 54 55 60 67 77 82 95 104 109
## [18] 125 129 141 142 147 149 162 176 189 193 194 196 211 218 221 222 224
## [35] 225 226 233 241 250 255 270 274 278 285 291 292 295 300 325 330 333
## [52] 339 350 358 361 375 376 389 394 399 413 416
all_Y = data.frame(c(1985:2016))
x = data.frame(table(dataset$PY[dataset$MT==1]))
y = data.frame(table(dataset$PY[dataset$MT==2]))
z = data.frame(table(dataset$PY[dataset$MT==3]))
x1 = merge(all_Y, x, by.x = "c.1985.2016.", by.y = "Var1", all = T)
x2 = merge(x1, y, by.x = "c.1985.2016.", by.y = "Var1", all = T)
freq_indices = merge(x2, z, by.x = "c.1985.2016.", by.y = "Var1", all = T)
colnames(freq_indices) = c("ano", "freq_rii","freq_sii","freq_both")
freq_citation = data.frame(cbind(c(1985,1988,1991,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016),
c(sum(dataset$mLCS[dataset$PY==1985]), sum(dataset$mLCS[dataset$PY==1988]), sum(dataset$mLCS[dataset$PY==1991]), sum(dataset$mLCS[dataset$PY==1994]), sum(dataset$mLCS[dataset$PY==1995]), sum(dataset$mLCS[dataset$PY==1996]), sum(dataset$mLCS[dataset$PY==1997]),sum(dataset$mLCS[dataset$PY==1998]), sum(dataset$mLCS[dataset$PY==1999]),sum(dataset$mLCS[dataset$PY==2000]),
sum(dataset$mLCS[dataset$PY==2001]), sum(dataset$mLCS[dataset$PY==2002]), sum(dataset$mLCS[dataset$PY==2003]), sum(dataset$mLCS[dataset$PY==2004]), sum(dataset$mLCS[dataset$PY==2005]), sum(dataset$mLCS[dataset$PY==2006]), sum(dataset$mLCS[dataset$PY==2007]),sum(dataset$mLCS[dataset$PY==2008]), sum(dataset$mLCS[dataset$PY==2009]),sum(dataset$mLCS[dataset$PY==2010]),
sum(dataset$mLCS[dataset$PY==2011]), sum(dataset$mLCS[dataset$PY==2012]), sum(dataset$mLCS[dataset$PY==2013]), sum(dataset$mLCS[dataset$PY==2014]), sum(dataset$mLCS[dataset$PY==2015]), sum(dataset$mLCS[dataset$PY==2016])),
c(sum(dataset$CR1[dataset$PY==1985]), sum(dataset$CR1[dataset$PY==1988]), sum(dataset$CR1[dataset$PY==1991]), sum(dataset$CR1[dataset$PY==1994]), sum(dataset$CR1[dataset$PY==1995]),sum(dataset$CR1[dataset$PY==1996]), sum(dataset$CR1[dataset$PY==1997]),sum(dataset$CR1[dataset$PY==1998]), sum(dataset$CR1[dataset$PY==1999]),sum(dataset$CR1[dataset$PY==2000]),
sum(dataset$CR1[dataset$PY==2001]),sum(dataset$CR1[dataset$PY==2002]), sum(dataset$CR1[dataset$PY==2003]),sum(dataset$CR1[dataset$PY==2004]), sum(dataset$CR1[dataset$PY==2005]),sum(dataset$CR1[dataset$PY==2006]), sum(dataset$CR1[dataset$PY==2007]),sum(dataset$CR1[dataset$PY==2008]), sum(dataset$CR1[dataset$PY==2009]),sum(dataset$CR1[dataset$PY==2010]),
sum(dataset$CR1[dataset$PY==2011]),sum(dataset$CR1[dataset$PY==2012]), sum(dataset$CR1[dataset$PY==2013]),sum(dataset$CR1[dataset$PY==2014]), sum(dataset$CR1[dataset$PY==2015]),sum(dataset$CR1[dataset$PY==2016])),
c(sum(dataset$TC_wos[dataset$PY==1985], na.rm=T),sum(dataset$TC_wos[dataset$PY==1988], na.rm=T), sum(dataset$TC_wos[dataset$PY==1991], na.rm=T),sum(dataset$TC_wos[dataset$PY==1994], na.rm=T), sum(dataset$TC_wos[dataset$PY==1995], na.rm=T),sum(dataset$TC_wos[dataset$PY==1996], na.rm=T), sum(dataset$TC_wos[dataset$PY==1997], na.rm=T),sum(dataset$TC_wos[dataset$PY==1998], na.rm=T), sum(dataset$TC_wos[dataset$PY==1999], na.rm=T),sum(dataset$TC_wos[dataset$PY==2000], na.rm=T),
sum(dataset$TC_wos[dataset$PY==2001], na.rm=T),sum(dataset$TC_wos[dataset$PY==2002], na.rm=T), sum(dataset$TC_wos[dataset$PY==2003], na.rm=T),sum(dataset$TC_wos[dataset$PY==2004], na.rm=T), sum(dataset$TC_wos[dataset$PY==2005], na.rm=T),sum(dataset$TC_wos[dataset$PY==2006], na.rm=T), sum(dataset$TC_wos[dataset$PY==2007], na.rm=T),sum(dataset$TC_wos[dataset$PY==2008], na.rm=T), sum(dataset$TC_wos[dataset$PY==2009], na.rm=T),sum(dataset$TC_wos[dataset$PY==2010], na.rm=T),
sum(dataset$TC_wos[dataset$PY==2011], na.rm=T),sum(dataset$TC_wos[dataset$PY==2012], na.rm=T), sum(dataset$TC_wos[dataset$PY==2013], na.rm=T),sum(dataset$TC_wos[dataset$PY==2014], na.rm=T), sum(dataset$TC_wos[dataset$PY==2015], na.rm=T),sum(dataset$TC_wos[dataset$PY==2016], na.rm=T)),
c(sum(dataset$TC_scopus[dataset$PY==1985], na.rm=T),sum(dataset$TC_scopus[dataset$PY==1988], na.rm=T), sum(dataset$TC_scopus[dataset$PY==1991], na.rm=T),sum(dataset$TC_scopus[dataset$PY==1994], na.rm=T), sum(dataset$TC_scopus[dataset$PY==1995], na.rm=T),sum(dataset$TC_scopus[dataset$PY==1996], na.rm=T), sum(dataset$TC_scopus[dataset$PY==1997], na.rm=T),sum(dataset$TC_scopus[dataset$PY==1998], na.rm=T), sum(dataset$TC_scopus[dataset$PY==1999], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2000], na.rm=T),
sum(dataset$TC_scopus[dataset$PY==2001], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2002], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2003], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2004], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2005], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2006], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2007], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2008], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2009], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2010], na.rm=T),
sum(dataset$TC_scopus[dataset$PY==2011], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2012], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2013], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2014], na.rm=T), sum(dataset$TC_scopus[dataset$PY==2015], na.rm=T),sum(dataset$TC_scopus[dataset$PY==2016], na.rm=T))))
freq_article = data.frame(table(dataset$PY))
freqs_year = merge(freq_citation, freq_article, by.x="X1", by.y="Var1", all = T)
colnames(freqs_year) = c("ano", "freq_mLCS","freq_LCR","freq_wos", "freq_scopus","freq_article")
freq_all_PY = merge(freq_indices, freqs_year, by.x = "ano", by.y = "ano", all = T)
freq_all_PY[is.na(freq_all_PY)] = 0
sm_article=smooth.spline(freq_all_PY$freq_article~freq_all_PY$ano, cv=F)
sm_rii=smooth.spline(freq_all_PY$freq_rii~freq_all_PY$ano, cv=F)
sm_sii=smooth.spline(freq_all_PY$freq_sii~freq_all_PY$ano, cv=F)
sm_both=smooth.spline(freq_all_PY$freq_both~freq_all_PY$ano, cv=F)
predict_values = data.frame(predict(sm_article), predict(sm_rii), predict(sm_sii), predict(sm_both))
freq_all_PY$pred_article=predict_values$y
freq_all_PY$pred_rii=predict_values$y.1
freq_all_PY$pred_sii=predict_values$y.2
freq_all_PY$pred_both=predict_values$y.3
Figura 2. Volume e tendência de uso dos índices de desigualdade, 1985-2016 (N=417).
# par(mar=c(3.6, 4.1, 1, 0), cex.axis=1.3, cex.lab=1.3, family = "serif")
graph_PY = barplot(freq_all_PY$freq_article, beside = T, ylab = "# of publications", col = "black", las = 2, names.arg = seq(1985,2016, by=1), density = 0, ylim=c(0,50))
text(graph_PY, freq_all_PY$freq_article, freq_all_PY$freq_article , pos = 3)
lines(graph_PY, freq_all_PY$pred_article, lwd = 2, type="l", col="black")
lines(graph_PY, freq_all_PY$pred_rii, lwd = 1, lty = 1, type="o", pch=16, col="darkblue")
lines(graph_PY, freq_all_PY$pred_sii, lwd = 1, lty = 1, type="o", pch=15, col="darkgreen")
lines(graph_PY, freq_all_PY$pred_both, lwd = 1, lty = 1, type="o", pch=17, col="darkred")
legend("topleft", inset = 0, cex=1.1, lty=c(1,1,1,1), pch=c(NA, 16, 15, 17), col=c("black", "darkblue", "darkgreen", "darkred"), legend=c("All", "RII", "SII", "Both"), bty="n", y.intersp = 0.5, x.intersp = 0.5)
Figura 2.1. Volume e tendência de uso dos índices de desigualdade, 1985-2016 (N=417).
graph_PY = barplot(freq_all_PY$freq_article, beside = T, ylab = "# of publications", col = "black", las = 2, names.arg = seq(1985,2016, by=1), density = 0, ylim=c(0,50))
lines(graph_PY, freq_all_PY$freq_article, type = "b", col="black", lwd = 2)
lines(graph_PY, freq_all_PY$freq_rii, type = "b", col="darkblue", lwd = 2)
lines(graph_PY, freq_all_PY$freq_sii, type = "b", col="darkgreen", lwd = 2)
lines(graph_PY, freq_all_PY$freq_both, type = "b", col="darkred", lwd = 2)
legend("topleft", inset = 0, cex=1.1, lty=c(1,1,1,1), pch=c(NA, 16, 15, 17), col=c("black", "darkblue", "darkgreen", "darkred"), legend=c("All", "RII", "SII", "Both"), bty="n", y.intersp = 0.5, x.intersp = 0.5)
sum(dataset$AU3) # author appearances = 2401
## [1] 2401
round(mean(dataset$AU3), 1); round(sd(dataset$AU3), 1)
## [1] 5.8
## [1] 6.1
table(dataset$AU3)
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 27 28 29 31 36 41 42
## 13 53 81 79 59 42 24 13 14 8 2 3 5 2 3 2 2 1 1 1 1 1 1 1 1
## 43 44 50
## 1 2 1
AU = as.character(dataset$AU)
AU_1 = paste(AU, collapse = "; ")
AU_2 = strsplit(AU_1, "; ")
dim(table(AU_2))
## [1] 1267
freq_authors = data.frame(table(AU_2))
Tabela 1. Autores mais produtivos da revisão sistemática de escopo, 1985-2016 (N=1267).
knitr::kable(head(freq_authors[order(freq_authors$Freq, decreasing = T), ], 25), row.names=F, results="asis")
| AU_2 | Freq |
|---|---|
| KUNST AE | 41 |
| MACKENBACH JP | 29 |
| DAVEY-SMITH G | 22 |
| MARMOT M | 21 |
| MENVIELLE G | 21 |
| MARTIKAINEN P | 18 |
| BORRELL C | 17 |
| REGIDOR E | 15 |
| STRAND BH | 13 |
| BOPP M | 12 |
| LEINSALU M | 12 |
| SHIPLEY MJ | 12 |
| BRUNNER EJ | 11 |
| DEBOOSERE P | 11 |
| KHANG YH | 11 |
| BLAKELY T | 10 |
| COSTA G | 10 |
| LEYLAND AH | 10 |
| SINGH-MANOUX A | 10 |
| FERRIE JE | 9 |
| HARPER S | 9 |
| LAHELMA E | 9 |
| BARROS AJD | 8 |
| CHASTANG JF | 8 |
| ESNAOLA S | 8 |
x = as.character(dataset$C1)
x1 = gsub("\\n", " ", x)
x2 = gsub("[:;,:]", "", x1)
x3 = paste(x2, collapse = " ")
x4 = strsplit(x3, "[.] ")
x4 = data.frame(x4)
colnames(x4) = "country"
x5 = data.frame(gsub(".*] ", "", x4$country)) # posso separar em 2 colunas!
colnames(x5) = "country"
x6 = data.frame(gsub("[.]$", "", x5$country))
colnames(x6) = "country"
x7 = data.frame(gsub("ENGLAND", "UK", x6$country))
colnames(x7) = "country"
x7 = data.frame(gsub("SCOTLAND", "UK", x7$country))
freq_all_affiliation = data.frame(table(x7))
colnames(freq_all_affiliation) = c("country", "Freq")
Afiliação de todos os autores.
knitr::kable(head(freq_all_affiliation[order(freq_all_affiliation$Freq, decreasing = T), ], 25), row.names=F, results="asis")
| country | Freq |
|---|---|
| UK | 177 |
| USA | 75 |
| NETHERLANDS | 65 |
| FRANCE | 51 |
| SWEDEN | 47 |
| SPAIN | 46 |
| NORWAY | 43 |
| FINLAND | 39 |
| ITALY | 27 |
| SOUTH KOREA | 26 |
| DENMARK | 24 |
| CANADA | 23 |
| AUSTRALIA | 22 |
| BRAZIL | 21 |
| SWITZERLAND | 21 |
| GERMANY | 20 |
| BELGIUM | 19 |
| NEW ZEALAND | 16 |
| LITHUANIA | 12 |
| JAPAN | 10 |
| CZECH REPUBLIC | 9 |
| ESTONIA | 8 |
| GREECE | 8 |
| COLOMBIA | 7 |
| AUSTRIA | 6 |
dim(table(dataset$AU1))
## [1] 303
freq_1o_author = data.frame(table(dataset$AU1))
table(freq_1o_author$Freq)
##
## 1 2 3 4 5 6 7 9
## 240 39 13 4 2 3 1 1
freq_affiliation = data.frame(table(dataset$RP))
freq_affiliation$Percent = round((freq_affiliation$Freq / sum(freq_affiliation$Freq))*100, 1)
Afiliação dos autores principais.
knitr::kable(head(freq_affiliation[order(freq_affiliation$Freq, decreasing = T), ], 20), row.names=F, results="asis")
| Var1 | Freq | Percent |
|---|---|---|
| ENGLAND | 61 | 14.6 |
| USA | 37 | 8.9 |
| NETHERLANDS | 33 | 7.9 |
| SCOTLAND | 32 | 7.7 |
| FRANCE | 28 | 6.7 |
| SOUTH KOREA | 25 | 6.0 |
| NORWAY | 24 | 5.8 |
| SPAIN | 21 | 5.0 |
| BRAZIL | 19 | 4.6 |
| SWEDEN | 14 | 3.4 |
| NEW ZEALAND | 13 | 3.1 |
| AUSTRALIA | 12 | 2.9 |
| CANADA | 12 | 2.9 |
| BELGIUM | 11 | 2.6 |
| FINLAND | 11 | 2.6 |
| SWITZERLAND | 8 | 1.9 |
| ITALY | 7 | 1.7 |
| DENMARK | 6 | 1.4 |
| JAPAN | 6 | 1.4 |
| AUSTRIA | 5 | 1.2 |
freq_journals = data.frame(table(dataset$SO))
freq_journals$Percent = round((freq_journals$Freq / sum(freq_journals$Freq))*100, 1)
Tabela 2. Periódicos mais produtivos da revisão sistemática de escopo, 1985-2016 (N=136).
knitr::kable(head(freq_journals[order(freq_journals$Freq, decreasing = T), ], 20), row.names=F, results="asis")
| Var1 | Freq | Percent |
|---|---|---|
| JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 71 | 17.0 |
| BMC PUBLIC HEALTH | 19 | 4.6 |
| EUROPEAN JOURNAL OF PUBLIC HEALTH | 17 | 4.1 |
| PLOS ONE | 17 | 4.1 |
| SOCIAL SCIENCE AND MEDICINE | 17 | 4.1 |
| INTERNATIONAL JOURNAL FOR EQUITY IN HEALTH | 15 | 3.6 |
| INTERNATIONAL JOURNAL OF EPIDEMIOLOGY | 14 | 3.4 |
| BMJ | 12 | 2.9 |
| AMERICAN JOURNAL OF PUBLIC HEALTH | 11 | 2.6 |
| BMJ OPEN | 8 | 1.9 |
| AMERICAN JOURNAL OF EPIDEMIOLOGY | 7 | 1.7 |
| EUROPEAN JOURNAL OF EPIDEMIOLOGY | 7 | 1.7 |
| PREVENTIVE MEDICINE | 7 | 1.7 |
| COMMUNITY DENTISTRY AND ORAL EPIDEMIOLOGY | 6 | 1.4 |
| INTERNATIONAL JOURNAL OF PUBLIC HEALTH | 6 | 1.4 |
| SCANDINAVIAN JOURNAL OF PUBLIC HEALTH | 6 | 1.4 |
| AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH | 5 | 1.2 |
| PUBLIC HEALTH | 5 | 1.2 |
| REVISTA PANAMERICANA DE SALUD PUBLICA | 5 | 1.2 |
| JOURNAL OF DENTAL RESEARCH | 4 | 1.0 |
par(mar=c(1.5, 1, 1, 1), cex.axis=1.3, cex.lab=1.3, family = "serif")
map2 = joinCountryData2Map(map, joinCode = "ISO3", nameJoinColumn = "ISO3V10", verbose = T)
## 60 codes from your data successfully matched countries in the map
## 0 codes from your data failed to match with a country code in the map
## failedCodes failedCountries
## 183 codes from the map weren't represented in your data
classInt = classInt::classIntervals(map2[["Freq"]], n=5, style="jenks")
## Warning in classInt::classIntervals(map2[["Freq"]], n = 5, style =
## "jenks"): var has missing values, omitted in finding classes
catMethod = classInt[["brks"]]
colourPalette = RColorBrewer::brewer.pal(5,"RdPu")
Figura 3. Distribuição geográfica da produção acadêmica relacionada ao uso dos índices de desigualdade, segundo a afiliação dos autores principais (N=39).
mapParams = mapCountryData(map2, nameColumnToPlot="Freq", addLegend=F, catMethod = catMethod, colourPalette = colourPalette, mapTitle = "")
do.call(addMapLegend, c(mapParams, legendLabels="all", legendIntervals="data", legendWidth = 0.5))
CR0 = as.character(dataset$CR)
CR1 = paste(CR0, collapse = "; ")
CR2 = strsplit(CR1, "; ")
sum(table(CR2)) # 43 NA
## [1] 845
freq_CR = data.frame(table(CR2))
Tabela 3. Artigos mais citados metodologicamente da revisão sistemática de escopo (N=97).
knitr::kable(head(freq_CR[order(freq_CR$Freq, decreasing = T), ], 25), row.names=FALSE, results="asis")
| CR2 | Freq |
|---|---|
| MACKENBACH J, 1997, SOCIAL SCIENCE AND MEDICINE | 217 |
| WAGSTAFF A, 1991, SOCIAL SCIENCE AND MEDICINE | 85 |
| PAMUK E, 1985, POPULATION STUDIES | 57 |
| 43 | |
| REGIDOR E, 2004, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 28 |
| HAYES L, 2002, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 26 |
| MACKENBACH J, 2008, NEW ENGLAND JOURNAL OF MEDICINE | 25 |
| SERGEANT J, 2006, BIOSTATISTIC | 23 |
| KUNST A, 1994, AMERICAN JOURNAL OF PUBLIC HEALTH | 21 |
| DAVEY-SMITH G, 1998, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 19 |
| KHANG Y, 2008, BMC PUBLIC HEALTH | 17 |
| KAKWANI N, 1997, JOURNAL OF ECONOMETRICS | 16 |
| ERNSTSEN L, 2012, BMC PUBLIC HEALTH | 13 |
| KUNST A, 1994, INTERNATIONAL JOURNAL OF EPIDEMIOLOGY | 13 |
| PAMUK E, 1988, EUROPEAN JOURNAL OF POPULATION | 13 |
| LOW A, 2004, JOURNAL OF PUBLIC HEALTH | 11 |
| KEPPEL K, 2005, VITAL AND HEALTH STATISTICS | 10 |
| BARROS A, 2013, PLOS ONE | 9 |
| DAVEY-SMITH G, 2002, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 9 |
| KUNST A, 1995, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 8 |
| CHENG N, 2008, AMERICAN JOURNAL OF EPIDEMIOLOGY | 7 |
| HARPER S, 2010, MILBANK QUARTERLY | 7 |
| MACKENBACH J, 1997, LANCET | 7 |
| EZENDAM N, 2008, EUROPEAN JOURNAL OF CANCER | 6 |
| KHANG Y, 2004, JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH | 6 |
TIMELINE
data = data.frame(id = 1:17, content = c("Pamuk 1985", "Pamuk 1988", "Wagstaff 1991", "Kunst IJE 1994", "Kunst AJPH 1994", "Mackenbach 1997", "Kakwani 1997", "Davey-Smith 1998", "Hayes 2002", "Regidor 2004", "Low 2004", "Keppel 2005", "Sergeant 2006", "Mackenbach 2008", "Khang 2008", "Ernstsen 2012", "Moreno 2015"),
start = c("1985", "1988", "1991", "1994", "1994", "1997", "1997", "1998", "2002", "2004", "2004", "2005", "2006", "2008", "2008", "2012", "2015"))
timevis(data)
ROYs network
src = c("Pamuk", "Wagstaff", "Kakwani", "Pamuk", "Kunst", "Davey-Smith", "Khang", "Pamuk", "Kunst", "Hayes", "Regidor", "Kunst", "Kunst", "Pamuk", "Kunst")
target = c("Wagstaff", "Kakwani", "Low", "Kunst", "Davey-Smith", "Khang", "Ernstsen", "Hayes", "Hayes", "Regidor", "Keppel", "Sergeant", "Mackenbach", "Moreno", "Moreno")
networkData = data.frame(src, target)
simpleNetwork(networkData, fontSize = 20, linkDistance = 100, zoom = TRUE)
plot.igraph(graph.data.frame(networkData, directed = TRUE), edge.arrow.size = 0.2, edge.curved = NULL, vertex.color="orange", size = 18, width = 5, arrow.width = 5, vertex.label.dist=0)
table(dataset$LA) # idiomas: 1/english 2/spanish 3/portuguese 4/french 5/italian
##
## 1 2 3 4 5
## 406 7 2 1 1
table(dataset$DT) # document type: 1/review article 2/research article
##
## 1 2
## 29 388
table(dataset$MT) # inequality index: 1/RII 2/SII 3/RII and SII
##
## 1 2 3
## 211 53 153
table(dataset$IC) # colaboração internacional
##
## N Y
## 229 188
table(dataset$DT, dataset$MT)
##
## 1 2 3
## 1 9 4 16
## 2 202 49 137
sum(dataset$mLCS) # mLCS - Local Citation Score (within methods section) = 802
## [1] 802
sum(dataset$CR1) # mLCR - Local Cited References (within methods section) = 802
## [1] 802
table(dataset$mLCS)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 13 16 17 19 21 23
## 320 37 17 8 4 4 5 3 1 2 1 1 3 1 1 1 1 1
## 25 26 28 57 85 217
## 1 1 1 1 1 1
sum(dataset$tc_wos, na.rm = T) # number of citations in WoS
## [1] 15240
sum(dataset$tc_scopus, na.rm = T) # number of citations in Scopus
## [1] 16950
summary(dataset$tc_wos)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0 3 13 38 34 1057 16
summary(dataset$tc_scopus)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 4.00 13.00 40.94 35.00 1088.00 3
rm(list=ls())