This is analysis associated with the first RQ for the STEM-IE project.
community_space <- rename(community_space,
response_date = resp_date,
signal_number = signal,
program_ID = SiteIDNumeric)
community_space$program_ID <- as.character(community_space$program_ID)
community_space$sociedad_class <- ifelse(community_space$eighth_math == 1, "8th Math",
ifelse(community_space$seventh_math == 1, "7th Math",
ifelse(community_space$sixth_math == 1, "6th Math",
ifelse(community_space$robotics == 1, "Robotics",
ifelse(community_space$dance == 1, "Dance", NA)))))
community_space$response_date <- format(as.Date(community_space$response_date, format = "%m/%d/%Y"), "%Y-%m-%d")
## Warning in strptime(x, format, tz = "GMT"): unknown timezone 'zone/tz/
## 2018c.1.0/zoneinfo/America/Detroit'
community_space <- mutate(community_space, response_date = as.character(response_date))
df <- mutate(df, response_date = as.character(response_date))
df <- left_join(df, community_space, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
value <- rename(value,
response_date = resp_date,
signal_number = signal,
program_ID = SiteIDNumeric)
value$program_ID <- as.character(value$program_ID)
value$sociedad_class <- ifelse(value$eighth_math == 1, "8th Math",
ifelse(value$seventh_math == 1, "7th Math",
ifelse(value$sixth_math == 1, "6th Math",
ifelse(value$robotics == 1, "Robotics",
ifelse(value$dance == 1, "Dance", NA)))))
value$response_date <- format(as.Date(value$response_date, format = "%m/%d/%Y"), "%Y-%m-%d")
value <- mutate(value, response_date = as.character(response_date))
df <- left_join(df, value, by = c("response_date", "program_ID", "signal_number", "sociedad_class"))
df$all_value_sum <- df$V01.01.HighUtility_sum + df$V01.03.HighIntrinsic_sum + df$V01.05.HighAttainment_sum
df$control <- jmRtools::composite_mean_maker(df, in_control, concentrating, learning, good_at)
df$value <- jmRtools::composite_mean_maker(df, important, future_goals)
Null Models
M0 <- lmer(control ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M0)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## control ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 5846.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.4201 -0.4504 0.0882 0.5452 3.3410
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.01836 0.1355
## participant_ID (Intercept) 0.28203 0.5311
## program_ID (Intercept) 0.00000 0.0000
## Residual 0.34018 0.5832
## Number of obs: 2970, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.84533 0.04027 70.66
sjstats::icc(M0)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: control ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.028660
## ICC (participant_ID): 0.440285
## ICC (program_ID): 0.000000
M01 <- lmer(value ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M01)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## value ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 6925
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7755 -0.5366 0.0545 0.6020 3.5370
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.018641 0.13653
## participant_ID (Intercept) 0.476102 0.69000
## program_ID (Intercept) 0.005928 0.07699
## Residual 0.488635 0.69902
## Number of obs: 2970, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.56689 0.05782 44.4
sjstats::icc(M01)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: value ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.018843
## ICC (participant_ID): 0.481249
## ICC (program_ID): 0.005992
M02 <- lmer(happy ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M02)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## happy ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 7605.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.4665 -0.4019 0.0595 0.5188 3.2445
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.0189 0.1375
## participant_ID (Intercept) 0.5047 0.7105
## program_ID (Intercept) 0.1043 0.3230
## Residual 0.6229 0.7893
## Number of obs: 2969, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.799 0.121 23.14
sjstats::icc(M02)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: happy ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.015110
## ICC (participant_ID): 0.403504
## ICC (program_ID): 0.083398
M03 <- lmer(excited ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M03)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## excited ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 8101.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.2302 -0.5459 0.0673 0.5932 3.1045
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.02962 0.1721
## participant_ID (Intercept) 0.54034 0.7351
## program_ID (Intercept) 0.11483 0.3389
## Residual 0.73599 0.8579
## Number of obs: 2969, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.6018 0.1268 20.51
sjstats::icc(M03)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: excited ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.020847
## ICC (participant_ID): 0.380310
## ICC (program_ID): 0.080823
M04 <- lmer(frustrated ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M04)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## frustrated ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 7789.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9657 -0.5174 -0.1433 0.3808 3.3343
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.008871 0.09418
## participant_ID (Intercept) 0.503086 0.70929
## program_ID (Intercept) 0.041607 0.20398
## Residual 0.675877 0.82212
## Number of obs: 2969, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.89567 0.08705 21.78
sjstats::icc(M04)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: frustrated ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.007215
## ICC (participant_ID): 0.409199
## ICC (program_ID): 0.033842
M05 <- lmer(bored ~
(1|program_ID) +
(1|participant_ID) +
(1|beep_ID_new),
data = df)
summary(M05)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## bored ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
## Data: df
##
## REML criterion at convergence: 8288.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.97201 -0.61796 -0.09737 0.48698 3.08594
##
## Random effects:
## Groups Name Variance Std.Dev.
## beep_ID_new (Intercept) 0.03174 0.1782
## participant_ID (Intercept) 0.53709 0.7329
## program_ID (Intercept) 0.08910 0.2985
## Residual 0.78770 0.8875
## Number of obs: 2969, groups:
## beep_ID_new, 248; participant_ID, 203; program_ID, 9
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.155 0.115 18.74
sjstats::icc(M05)
##
## Linear mixed model
## Family: gaussian (identity)
## Formula: bored ~ (1 | program_ID) + (1 | participant_ID) + (1 | beep_ID_new)
##
## ICC (beep_ID_new): 0.021959
## ICC (participant_ID): 0.371529
## ICC (program_ID): 0.061631