This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

# Land Management Program
QLDD<-read.csv("https://raw.githubusercontent.com/tuyenhavan/Statistics/master/Qldd.done2.csv",header=T,sep=";")
# Check the first six rows of the dataset
head(QLDD)
# import tidyverse library
library(tidyverse)
# Get first five columns
year<- QLDD %>% select(A1:A5)
# Check the first five rows
head(year)
# Covert first five columns into rows
year1<- year %>% tidyr::gather(Year, Values,A1:A5)
head(year1)
# Convert charactor into factor
year1$Year<-as.factor(year1$Year)
str(year1)
'data.frame':   150 obs. of  2 variables:
 $ Year  : Factor w/ 5 levels "A1","A2","A3",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Values: int  12 14 12 11 10 12 10 10 8 10 ...
# Sum the total of each candidate for each year
sum(year1$Values[year1=="A1"])
[1] 395
sum(year1$Values[year1=="A2"])
[1] 407
sum(year1$Values[year1=="A3"])
[1] 422
sum(year1$Values[year1=="A4"])
[1] 430
sum(year1$Values[year1=="A5"])
[1] 419
table(vitri2)
     Values
Place  1  2  3
  B1   1 20  9
  B10  3 21  6
  B11  2 25  3
  B2   5 16  9
  B3   1 18 11
  B4   2 19  9
  B5   7 18  5
  B6   4 25  1
  B7   4 19  7
  B8   8 20  2
  B9   3 21  6
  C1   2 22  6
  C10  4 20  6
  C11 13 16  1
  C12  2 23  5
  C13  2 23  5
  C14  1 24  5
  C15  2 20  8
  C16  3 15 12
  C17  4 20  6
  C18  2 23  5
  C19  0 25  5
  C2   7 19  4
  C20  3 19  8
  C21  5 21  4
  C22  3 26  1
  C23  5 17  8
  C24  2 21  7
  C25  5 19  6
  C26  0 25  5
  C27  0 22  8
  C28  1 23  6
  C29  1 20  9
  C3   4 22  4
  C30  0 21  9
  C31  3 14 13
  C32  1 20  9
  C33  0 18 12
  C34  0 19 11
  C4   5 15 10
  C5   1 16 13
  C6   4  9 16
  C7   1 15 14
  C8   7 16  7
  C9   2 15 13
  D1   0 21  9
  D2   0 19 11
  D3   2 18 10
  D4   1 23  6
  D5   0 20 10
  F1   2 22  6
  F2   2 20  8
  F3  15 12  3
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KYGBge3J9DQojIExhbmQgTWFuYWdlbWVudCBQcm9ncmFtDQoNClFMREQ8LXJlYWQuY3N2KCJodHRwczovL3Jhdy5naXRodWJ1c2VyY29udGVudC5jb20vdHV5ZW5oYXZhbi9TdGF0aXN0aWNzL21hc3Rlci9RbGRkLmRvbmUyLmNzdiIsaGVhZGVyPVQsc2VwPSI7IikNCiMgQ2hlY2sgdGhlIGZpcnN0IHNpeCByb3dzIG9mIHRoZSBkYXRhc2V0DQoNCmhlYWQoUUxERCkNCiMgaW1wb3J0IHRpZHl2ZXJzZSBsaWJyYXJ5DQoNCmxpYnJhcnkodGlkeXZlcnNlKQ0KIyBHZXQgZmlyc3QgZml2ZSBjb2x1bW5zDQoNCnllYXI8LSBRTEREICU+JSBzZWxlY3QoQTE6QTUpDQojIENoZWNrIHRoZSBmaXJzdCBmaXZlIHJvd3MNCg0KaGVhZCh5ZWFyKQ0KIyBDb3ZlcnQgZmlyc3QgZml2ZSBjb2x1bW5zIGludG8gcm93cw0KeWVhcjE8LSB5ZWFyICU+JSB0aWR5cjo6Z2F0aGVyKFllYXIsIFZhbHVlcyxBMTpBNSkNCg0KaGVhZCh5ZWFyMSkNCiMgQ29udmVydCBjaGFyYWN0b3IgaW50byBmYWN0b3INCg0KeWVhcjEkWWVhcjwtYXMuZmFjdG9yKHllYXIxJFllYXIpDQoNCnN0cih5ZWFyMSkNCg0KYGBgDQoNCmBgYHtyfQ0KIyBTdW0gdGhlIHRvdGFsIG9mIGVhY2ggY2FuZGlkYXRlIGZvciBlYWNoIHllYXINCg0Kc3VtKHllYXIxJFZhbHVlc1t5ZWFyMT09IkExIl0pDQoNCnN1bSh5ZWFyMSRWYWx1ZXNbeWVhcjE9PSJBMiJdKQ0KDQpzdW0oeWVhcjEkVmFsdWVzW3llYXIxPT0iQTMiXSkNCg0Kc3VtKHllYXIxJFZhbHVlc1t5ZWFyMT09IkE0Il0pDQoNCnN1bSh5ZWFyMSRWYWx1ZXNbeWVhcjE9PSJBNSJdKQ0KDQoNCmBgYA0KDQoNCmBgYHtyfQ0KIyBDYWxjdWxhdGUgdGhlIHN1bSBvZiBlYWNoIHZhcmlhYmUNCg0Kdml0cmk8LSBRTEREICU+JSBkcGx5cjo6c2VsZWN0KEIxOkYzKSAjIFNlbGVjdCBhbGwgY29sdW1ucyBmcm9tIEIxIHRvIEYzDQoNCmhlYWQodml0cmkpDQojIENvbnZlcnQgYWxsIGNvbHVtbnMgdG8gZmFjdG9yIGZyb20gaW50ZWdlcg0Kdml0cmkxPC0gdml0cmkgJT4lIG11dGF0ZV9pZihpcy5pbnRlZ2VyLGFzLmZhY3RvcikNCg0Kc3RyKHZpdHJpMSkNCiMgR2F0aGVyIG9yIGNvbnZlcnQgY29sdW1ucyB0byByb3dzDQoNCnZpdHJpMjwtIHZpdHJpMSAlPiV0aWR5cjo6Z2F0aGVyKFBsYWNlLCBWYWx1ZXMsIEIxOkYzKQ0KDQpoZWFkKHZpdHJpMikNCg0Kdml0cmkyPC0gdml0cmkyICU+JSBtdXRhdGVfaWYoaXMuY2hhcmFjdGVyLGFzLmZhY3RvcikNCg0KdGFibGUodml0cmkyKQ0KYGBgDQoNCg==