The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the Rpubs site and submit the link to the hosted file via Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data("anscombe") # load data
data <- anscombe # assign data to a new object
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.4.3
## Loading required package: timeSeries
means <- colMeans(data) # compute mean value in each column
means
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
variances <- colVars(data) # compute variance value in each column
variances
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
#Performs correlation test on each pair
corr_x1y1 <- correlationTest(data$x1, data$y1)
corr_x2y2 <- correlationTest(data$x2, data$y2)
corr_x3y3 <- correlationTest(data$x3, data$y3)
corr_x4y4 <- correlationTest(data$x4, data$y4)
# see correlation results
corr_x1y1
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Tue Apr 3 19:25:03 2018
corr_x2y2
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Tue Apr 3 19:25:03 2018
corr_x3y3
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Tue Apr 3 19:25:03 2018
corr_x4y4
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Tue Apr 3 19:25:03 2018
par(mfrow=c(2,2))
plot(data$x1, data$y1, title("x1y1"))
plot(data$x2, data$y2, title("x2y2"))
plot(data$x3, data$y3, title("x3y3"))
plot(data$x4, data$y4, title("x4y4"))
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch = 16, title("x1y1"))
plot(data$x2, data$y2, pch = 16, title("x2y2"))
plot(data$x3, data$y3, pch = 16, title("x3y3"))
plot(data$x4, data$y4, pch = 16, title("x4y4"))
lm() function.lm_x1y1 <- lm(data$y1~data$x1)
lm_x2y2 <- lm(data$y2~data$x2)
lm_x3y3 <- lm(data$y3~data$x3)
lm_x4y4 <- lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch= 16, title("x1y1"))
abline(lm_x1y1)
abline(lm_x1y1)
plot(data$x2, data$y2, pch= 16, title("x2y2"))
abline(lm_x2y2)
plot(data$x3, data$y3, pch= 16, title("x3y3"))
abline(lm_x3y3)
plot(data$x4, data$y4, pch= 16, title("x4y4"))
abline(lm_x4y4)
library(fit.models)
modelfits <- fit.models(lm(data$y1~data$x1),
lm(data$y2~data$x2),
lm(data$y3~data$x3),
lm(data$y4~data$x4))
summary(modelfits)
Calls: lm(data\(y1 ~ data\)x1): lm(formula = data\(y1 ~ data\)x1) lm(data\(y2 ~ data\)x2): lm(formula = data\(y2 ~ data\)x2) lm(data\(y3 ~ data\)x3): lm(formula = data\(y3 ~ data\)x3) lm(data\(y4 ~ data\)x4): lm(formula = data\(y4 ~ data\)x4)
Residual Statistics: Min 1Q Median 3Q Max lm(data\(y1 ~ data\)x1): -1.921 -0.4558 -4.136e-02 0.7094 1.839 lm(data\(y2 ~ data\)x2): -1.901 -0.7609 1.291e-01 0.9491 1.269 lm(data\(y3 ~ data\)x3): -1.159 -0.6146 -2.303e-01 0.1540 3.241 lm(data\(y4 ~ data\)x4): -1.751 -0.8310 1.110e-16 0.8090 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept): lm(data\(y1 ~ data\)x1): 3.0001 1.1247 2.667 0.02573 lm(data\(y2 ~ data\)x2): 3.0009 1.1253 2.667 0.02576 lm(data\(y3 ~ data\)x3): 3.0025 1.1245 2.670 0.02562 lm(data\(y4 ~ data\)x4): 3.0017 1.1239 2.671 0.02559
data$x1: lm(data$y1 ~ data$x1): 0.5001 0.1179 4.241 0.00217
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): 0.5000 0.1180 4.239 0.00218
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): 0.4997 0.1179 4.239 0.00218
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): 0.4999 0.1178 4.243 0.00216
(Intercept): lm(data\(y1 ~ data\)x1): * lm(data\(y2 ~ data\)x2): * lm(data\(y3 ~ data\)x3): * lm(data\(y4 ~ data\)x4): *
data$x1: lm(data$y1 ~ data$x1): **
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): **
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): **
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): **
Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual Scale Estimates: lm(data\(y1 ~ data\)x1): 1.237 on 9 degrees of freedom lm(data\(y2 ~ data\)x2): 1.237 on 9 degrees of freedom lm(data\(y3 ~ data\)x3): 1.236 on 9 degrees of freedom lm(data\(y4 ~ data\)x4): 1.236 on 9 degrees of freedom
Multiple R-squared: lm(data\(y1 ~ data\)x1): 0.6665 lm(data\(y2 ~ data\)x2): 0.6662 lm(data\(y3 ~ data\)x3): 0.6663 lm(data\(y4 ~ data\)x4): 0.6667