#generate a single random variable that represents the number of
#heads in 100 flips of our unfair coin
rbinom(1, size = 100, prob = 0.7)
## [1] 66
#request 100 observations, each of size 1, with success probability of 0.7
flips2 <- rbinom(100, size = 1, prob = 0.7)
flips2
## [1] 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1
## [36] 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 0
## [71] 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 1
## Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, size = 100, prob = 0.5))
## [1] 0.6317984
n <- 2000
k <- seq(0, n, by = 20)
plot (k,
dbinom(k, size = n, prob = pi/10, log = TRUE),
type = "l",
ylab = "log density",
main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(k, log(dbinom(k, n, pi/10)), col = "red", lwd = 2)
