summary(model)
___________________________________________________________________________________________________
Layer (type)                                Output Shape                            Param #        
===================================================================================================
input_1 (InputLayer)                        (None, 45)                              0              
___________________________________________________________________________________________________
embedding_1 (Embedding)                     (None, 45, 100)                         4000           
___________________________________________________________________________________________________
conv1d_1 (Conv1D)                           (None, 42, 256)                         102656         
___________________________________________________________________________________________________
flatten_1 (Flatten)                         (None, 10752)                           0              
___________________________________________________________________________________________________
dense_1 (Dense)                             (None, 1024)                            11011072       
___________________________________________________________________________________________________
dense_2 (Dense)                             (None, 1)                               1025           
===================================================================================================
Total params: 11,118,753
Trainable params: 11,118,753
Non-trainable params: 0
___________________________________________________________________________________________________

Using a PCA 2D projection is possible to observe the FP points for conficker form a cluster along the PC3-axis for the values (1,1) for the PC1 and PC2 axis. Notice that all the Conficker False positives have a character length around 4.

LS0tCnRpdGxlOiAiUENBIHByb3llY3Rpb24gZm9yIENvbnZuZXQgMUQgcmVzdWx0cyIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQotLS0KCgpgYGB7cn0KbW9kZWw8LWtlcmFzOjpsb2FkX21vZGVsX2hkZjUoImNubi01ZS5oNSIpCnN1bW1hcnkobW9kZWwpCmBgYApVc2luZyBhIFBDQSAyRCBwcm9qZWN0aW9uIGlzIHBvc3NpYmxlIHRvIG9ic2VydmUgdGhlIEZQIHBvaW50cyBmb3IgY29uZmlja2VyIGZvcm0gYSBjbHVzdGVyIGFsb25nIHRoZSBQQzMtYXhpcyBmb3IgdGhlIHZhbHVlcyAoMSwxKSBmb3IgdGhlIFBDMSBhbmQgUEMyIGF4aXMuIE5vdGljZSB0aGF0IGFsbCB0aGUgQ29uZmlja2VyIEZhbHNlIHBvc2l0aXZlcyBoYXZlIGEgY2hhcmFjdGVyIGxlbmd0aCBhcm91bmQgNC4KCmBgYHtyIGZpZy5oZWlnaHQ9MTAsIGZpZy53aWR0aD0xMH0KcGx5PC1wbG90X2x5KHIkcGNhX2RhdGEgJT4lIHNhbXBsZV9uKDEwMDApLCB0eXBlPSJzY2F0dGVyM2QiLCB4ID0gflBDMSwgeSA9IH5QQzIsIHogPSB+UEMzLCBjb2xvciA9IH5sYWJlbCwgY29sb3JzID0gYygnI0JGMzgyQScsICcjMEM0QjhFJyksIG9wYWNpdHk9MC41LCBtb2RlPSdtYXJrZXJzJywgIGhlaWdodCA9IDgwMCwgd2lkdGggPSAxMDI0LAogICAgICAgIG1hcmtlciA9IGxpc3Qoc2l6ZSA9IDMpLHRleHQgPSB+ZG9tYWluKSAlPiUgbGF5b3V0KHRpdGxlID0gIkNvbmZpY2tlciBEZXRlY3Rpb24gUmVzdWx0cyB1c2luZyBhIENvbnZuZXQgMUQgTGF5ZXIiKQpwbHkKYGBgCgo=