summary(model)
___________________________________________________________________________________________________
Layer (type) Output Shape Param #
===================================================================================================
input_1 (InputLayer) (None, 45) 0
___________________________________________________________________________________________________
embedding_1 (Embedding) (None, 45, 100) 4000
___________________________________________________________________________________________________
conv1d_1 (Conv1D) (None, 42, 256) 102656
___________________________________________________________________________________________________
flatten_1 (Flatten) (None, 10752) 0
___________________________________________________________________________________________________
dense_1 (Dense) (None, 1024) 11011072
___________________________________________________________________________________________________
dense_2 (Dense) (None, 1) 1025
===================================================================================================
Total params: 11,118,753
Trainable params: 11,118,753
Non-trainable params: 0
___________________________________________________________________________________________________
Using a PCA 2D projection is possible to observe the FP points for conficker form a cluster along the PC3-axis for the values (1,1) for the PC1 and PC2 axis. Notice that all the Conficker False positives have a character length around 4.