library (psych)
getwd ()
## [1] "C:/Users/Victoria/Desktop/archivos escritorio/PhD. Marcela/Primera estancia/MODULO 2"
df<- read.csv ("http://gauss.inf.um.es/datos/paisesMundoRedC.csv", header=TRUE, sep = ";", dec = ".", stringsAsFactors = FALSE)
head (df)
## Country EPI_regions
## AGO Angola Sub-Saharan Africa
## ALB Albania Central and Eastern Europ
## ARE United Arab Emirates Middle East and North Africa
## ARG Argentina Latin America and Caribbe
## ARM Armenia Middle East and North Africa
## AUS Australia East Asia and the Pacific
## GEO_subregion Population2005 GDP_capita.MRYA landarea EPI
## AGO Southern Africa 15941.4 2314.4 1251895.62 39.5
## ALB Central Europe 3129.7 4955.3 28346.12 84.0
## ARE Arabian Peninsula 4495.8 22698.3 74776.60 64.0
## ARG South America 38747.2 13652.4 2736296.00 81.8
## ARM Eastern Europe 3016.3 5011.0 28272.73 77.8
## AUS Australia + New Zealand 20155.1 30677.9 7634643.84 79.8
## FOREST FISH AGRICULTURE
## AGO 95.4 87.3 61.3
## ALB 100.0 62.5 75.6
## ARE 100.0 50.0 72.3
## ARG 75.9 58.8 79.9
## ARM 70.1 NA 94.2
## AUS 100.0 96.7 78.7
dim(df)
## [1] 149 10
str (df)
## 'data.frame': 149 obs. of 10 variables:
## $ Country : chr "Angola" "Albania" "United Arab Emirates" "Argentina" ...
## $ EPI_regions : chr "Sub-Saharan Africa" "Central and Eastern Europ" "Middle East and North Africa" "Latin America and Caribbe" ...
## $ GEO_subregion : chr "Southern Africa" "Central Europe" "Arabian Peninsula" "South America" ...
## $ Population2005 : num 15941 3130 4496 38747 3016 ...
## $ GDP_capita.MRYA: num 2314 4955 22698 13652 5011 ...
## $ landarea : num 1251896 28346 74777 2736296 28273 ...
## $ EPI : num 39.5 84 64 81.8 77.8 79.8 89.4 72.2 54.7 78.4 ...
## $ FOREST : num 95.4 100 100 75.9 70.1 100 100 100 0 100 ...
## $ FISH : num 87.3 62.5 50 58.8 NA 96.7 NA NA NA 47.4 ...
## $ AGRICULTURE : num 61.3 75.6 72.3 79.9 94.2 78.7 76.4 71.4 95.9 80.8 ...
## [1] "Southern Africa" "Central Europe"
## [3] "Arabian Peninsula" "South America"
## [5] "Eastern Europe" "Australia + New Zealand"
## [7] "Western Europe" "Eastern Europe"
## [9] "Eastern Africa" "Western Europe"
## [11] "Western Africa" "Western Africa"
## [13] "South Asia" "Central Europe"
## [15] "Central Europe" "Eastern Europe"
## [17] "Meso America" "South America"
## [19] "South America" "Southern Africa"
## [21] "Central Africa" "North America"
## [23] "Western Europe" "South America"
## [25] "Northeast Asia" "Western Africa"
## [27] "Central Africa" "Central Africa"
## [29] "Central Africa" "South America"
## [31] "Meso America" "Caribbean"
## [33] "Central Europe" "Central Europe"
## [35] "Western Europe" "Eastern Africa"
## [37] "Western Europe" "Caribbean"
## [39] "Northern Africa" "South America"
## [41] "Northern Africa" "Eastern Africa"
## [43] "Western Europe" "Central Europe"
## [45] "Eastern Africa" "Western Europe"
## [47] "South Pacific" "Western Europe"
## [49] "Central Africa" "Western Europe"
## [51] "Eastern Europe" "Western Africa"
## [53] "Western Africa" "Western Africa"
## [55] "Western Europe" "Meso America"
## [57] "South America" "Meso America"
## [59] "Central Europe" "Caribbean"
## [61] "Central Europe" "South East Asia"
## [63] "South Asia" "Western Europe"
## [65] "South Asia" "Mashriq"
## [67] "Western Europe" "Western Europe"
## [69] "Western Europe" "Caribbean"
## [71] "Mashriq" "Northeast Asia"
## [73] "Central Asia" "Eastern Africa"
## [75] "Central Asia" "South East Asia"
## [77] "Northeast Asia" "Arabian Peninsula"
## [79] "South East Asia" "Mashriq"
## [81] "South Asia" "Central Europe"
## [83] "Western Europe" "Central Europe"
## [85] "Northern Africa" "Eastern Europe"
## [87] "Western Indian Ocean" "Meso America"
## [89] "Central Europe" "Western Africa"
## [91] "South East Asia" "Northeast Asia"
## [93] "Southern Africa" "Western Africa"
## [95] "Western Indian Ocean" "Southern Africa"
## [97] "South East Asia" "Southern Africa"
## [99] "Western Africa" "Western Africa"
## [101] "Meso America" "Western Europe"
## [103] "Western Europe" "South Asia"
## [105] "Australia + New Zealand" "Arabian Peninsula"
## [107] "South Asia" "Meso America"
## [109] "South America" "South East Asia"
## [111] "South Pacific" "Central Europe"
## [113] "Western Europe" "South America"
## [115] "Central Europe" "Eastern Europe"
## [117] "Eastern Africa" "Arabian Peninsula"
## [119] "Northern Africa" "Western Africa"
## [121] "South Pacific" "Western Africa"
## [123] "Meso America" "Central Europe"
## [125] "Central Europe" "Western Europe"
## [127] "Southern Africa" "Mashriq"
## [129] "Central Africa" "Western Africa"
## [131] "South East Asia" "Central Asia"
## [133] "Central Asia" "Caribbean"
## [135] "Northern Africa" "Central Europe"
## [137] "Northeast Asia" "Southern Africa"
## [139] "Eastern Africa" "Eastern Europe"
## [141] "South America" "North America"
## [143] "Central Asia" "South America"
## [145] "South East Asia" "Arabian Peninsula"
## [147] "Southern Africa" "Southern Africa"
## [149] "Southern Africa"
indicesAfrica <- grep( "Africa", df$GEO_subregion )
dfA <- df[ indicesAfrica, ]
str( dfA )
## 'data.frame': 41 obs. of 10 variables:
## $ Country : chr "Angola" "Burundi" "Benin" "Burkina Faso" ...
## $ EPI_regions : chr "Sub-Saharan Africa" "Sub-Saharan Africa" "Sub-Saharan Africa" "Sub-Saharan Africa" ...
## $ GEO_subregion : chr "Southern Africa" "Eastern Africa" "Western Africa" "Western Africa" ...
## $ Population2005 : num 15941 7548 8439 13228 1765 ...
## $ GDP_capita.MRYA: num 2314 630 1016 1143 11313 ...
## $ landarea : num 1251896 25227 115828 275748 559516 ...
## $ EPI : num 39.5 54.7 56.1 44.3 68.7 56 65.2 63.8 47.3 69.7 ...
## $ FOREST : num 95.4 0 17.8 64.5 79.2 97.2 100 78.4 94.8 98.4 ...
## $ FISH : num 87.3 NA 91.5 NA NA NA 91.2 52.4 46.3 74.1 ...
## $ AGRICULTURE : num 61.3 95.9 88.2 87.7 72.3 71.8 88.7 69.9 70.8 99.1 ...
sapply(dfA, FUN = typeof)
## Country EPI_regions GEO_subregion Population2005
## "character" "character" "character" "double"
## GDP_capita.MRYA landarea EPI FOREST
## "double" "double" "double" "double"
## FISH AGRICULTURE
## "double" "double"
dfA$Country <- factor (dfA$Country)
dfA$EPI_regions <- factor (dfA$EPI_regions)
dfA$GEO_subregion <- factor (dfA$GEO_subregion)
str(dfA)
## 'data.frame': 41 obs. of 10 variables:
## $ Country : Factor w/ 41 levels "Algeria","Angola",..: 2 6 3 5 4 8 11 7 12 10 ...
## $ EPI_regions : Factor w/ 2 levels "Middle East and North Africa",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ GEO_subregion : Factor w/ 5 levels "Central Africa",..: 4 2 5 5 4 1 5 1 1 1 ...
## $ Population2005 : num 15941 7548 8439 13228 1765 ...
## $ GDP_capita.MRYA: num 2314 630 1016 1143 11313 ...
## $ landarea : num 1251896 25227 115828 275748 559516 ...
## $ EPI : num 39.5 54.7 56.1 44.3 68.7 56 65.2 63.8 47.3 69.7 ...
## $ FOREST : num 95.4 0 17.8 64.5 79.2 97.2 100 78.4 94.8 98.4 ...
## $ FISH : num 87.3 NA 91.5 NA NA NA 91.2 52.4 46.3 74.1 ...
## $ AGRICULTURE : num 61.3 95.9 88.2 87.7 72.3 71.8 88.7 69.9 70.8 99.1 ...
summary(dfA)
## Country EPI_regions GEO_subregion
## Algeria : 1 Middle East and North Africa: 5 Central Africa : 6
## Angola : 1 Sub-Saharan Africa :36 Eastern Africa : 7
## Benin : 1 Northern Africa: 5
## Botswana : 1 Southern Africa:10
## Burkina Faso: 1 Western Africa :13
## Burundi : 1
## (Other) :35
## Population2005 GDP_capita.MRYA landarea EPI
## Min. : 793.1 Min. : 629.8 Min. : 17410 Min. :39.10
## 1st Qu.: 5525.5 1st Qu.: 1008.1 1st Qu.: 147882 1st Qu.:51.30
## Median : 12883.9 Median : 1312.8 Median : 403759 Median :59.40
## Mean : 21030.0 Mean : 2506.2 Mean : 642219 Mean :59.16
## 3rd Qu.: 28816.2 3rd Qu.: 2299.1 3rd Qu.: 968072 3rd Qu.:69.00
## Max. :131529.7 Max. :11313.3 Max. :2492385 Max. :78.10
##
## FOREST FISH AGRICULTURE
## Min. : 0.00 Min. :23.90 Min. :53.00
## 1st Qu.: 73.30 1st Qu.:72.60 1st Qu.:69.30
## Median : 86.40 Median :79.10 Median :73.90
## Mean : 78.51 Mean :75.11 Mean :74.87
## 3rd Qu.: 98.40 3rd Qu.:87.05 3rd Qu.:81.60
## Max. :100.00 Max. :91.60 Max. :99.10
## NA's :14
#install.packages("tables")
library (tables)
## Warning: package 'tables' was built under R version 3.4.4
## Loading required package: Hmisc
## Warning: package 'Hmisc' was built under R version 3.4.4
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.4
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:psych':
##
## describe
## The following objects are masked from 'package:base':
##
## format.pval, units
tabla <- tabular (GEO_subregion ~ (Population2005+ landarea+ GDP_capita.MRYA)*((media=mean)+sd+max+min), data= dfA)
#tabla <- tabular (dfA$GEO_subregion ~ (dfA$Population2005+ dfA$landarea+ dfA$GDP_capita.MRYA)*((media=mean)+sd+max+min), data= dfA)
tabla
##
## Population2005 landarea
## GEO_subregion media sd max min media sd
## Central Africa 15507 21283 57549 1383.8 875595 786168
## Eastern Africa 23183 27067 77431 793.1 300392 413610
## Northern Africa 36940 23147 74033 10102.5 1262919 1079434
## Southern Africa 16388 15487 47432 1032.4 676391 418233
## Western Africa 19871 34051 131530 1586.3 453551 453694
##
## GDP_capita.MRYA
## max min media sd max min
## 2313414 265146 2038 1914.5 5835 700.0
## 1123717 20904 1163 417.6 1982 629.8
## 2492385 147881 4912 2209.6 7758 2050.2
## 1251896 17410 4057 4095.1 11313 631.5
## 1248146 34106 1327 561.8 2299 700.3
tabla2 <- tabular( (Sub_Geog = GEO_subregion) ~ (Agricultura = AGRICULTURE) *( (Media = mean ) + (Desv. = sd) + (Max. = max) + (Min.= min)), data = dfA )
tabla2
##
## Agricultura
## Sub_Geog Media Desv. Max. Min.
## Central Africa 79.28 11.174 99.1 69.9
## Eastern Africa 77.41 12.403 95.9 54.4
## Northern Africa 66.04 8.136 74.8 53.0
## Southern Africa 69.74 4.681 74.7 61.3
## Western Africa 78.82 7.131 88.7 65.9
html (tabla2, options = htmloptions( HTMLcaption = "Agricultura",pad = TRUE))
| Agricultura | ||||
|---|---|---|---|---|
| Sub_Geog | Media | Desv. | Max. | Min. |
| Central Africa | 79.28 | 11.174 | 99.1 | 69.9 |
| Eastern Africa | 77.41 | 12.403 | 95.9 | 54.4 |
| Northern Africa | 66.04 | 8.136 | 74.8 | 53.0 |
| Southern Africa | 69.74 | 4.681 | 74.7 | 61.3 |
| Western Africa | 78.82 | 7.131 | 88.7 | 65.9 |
plot (dfA$Population2005, dfA$GDP_capita.MRYA, col=dfA$GEO_subregion)
#Realiza un gráfico de tu interés para el conjunto de datos empleando la librería ggplot2
library(ggplot2)
ggplot (dfA, aes (x= landarea, y = GDP_capita.MRYA))+
geom_point(na.rm=T,aes( colour = GEO_subregion ))+
stat_smooth( method = "lm" )
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 7 x64 (build 7601) Service Pack 1
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=Spanish_Ecuador.1252 LC_CTYPE=Spanish_Ecuador.1252
## [3] LC_MONETARY=Spanish_Ecuador.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Ecuador.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] tables_0.8.3 Hmisc_4.1-1 ggplot2_2.2.1 Formula_1.2-2
## [5] survival_2.41-3 lattice_0.20-35 psych_1.7.8
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.15 compiler_3.4.3 pillar_1.2.1
## [4] RColorBrewer_1.1-2 plyr_1.8.4 base64enc_0.1-3
## [7] tools_3.4.3 rpart_4.1-11 digest_0.6.15
## [10] checkmate_1.8.5 htmlTable_1.11.2 evaluate_0.10.1
## [13] tibble_1.4.2 gtable_0.2.0 nlme_3.1-131
## [16] rlang_0.2.0 Matrix_1.2-12 rstudioapi_0.7
## [19] yaml_2.1.18 parallel_3.4.3 gridExtra_2.3
## [22] stringr_1.3.0 knitr_1.20 cluster_2.0.6
## [25] htmlwidgets_1.0 nnet_7.3-12 rprojroot_1.3-2
## [28] grid_3.4.3 data.table_1.10.4-3 foreign_0.8-69
## [31] rmarkdown_1.9 latticeExtra_0.6-28 magrittr_1.5
## [34] backports_1.1.2 scales_0.5.0 htmltools_0.3.6
## [37] splines_3.4.3 mnormt_1.5-5 colorspace_1.3-2
## [40] labeling_0.3 stringi_1.1.6 acepack_1.4.1
## [43] lazyeval_0.2.1 munsell_0.4.3
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.