In this lab, we will focus on linear and non-linear programming.
Linear programming, as discussed in the previous lab, works with simple and multiple linear regression techniques; sometimes the variables have completely direct or completely non-direct relationships and these techniques can model them.
Sometimes, however, the variables do not predict each other in a linear way. For example, looking at the stock market vs. time, we know that generally the market was booming before the crash, then the market crashed and the great depression hit, and slowly the market started to rise again.
This pattern is not linear, and in fact a non-linear programming technique can be used to model it and predict the value of the market based on the year.
In this lab, we will explore topics like optimization, solve a marketing model, and perform linear and non-linear regression on the cost of servers.
We are going to use tidyverse a collection of R packages designed for data science.
## Loading required package: lpSolveAPI
lprec <- make.lp(0, 2)
lp.control(lprec, sense="max")
## $anti.degen
## [1] "fixedvars" "stalling"
##
## $basis.crash
## [1] "none"
##
## $bb.depthlimit
## [1] -50
##
## $bb.floorfirst
## [1] "automatic"
##
## $bb.rule
## [1] "pseudononint" "greedy" "dynamic" "rcostfixing"
##
## $break.at.first
## [1] FALSE
##
## $break.at.value
## [1] 1e+30
##
## $epsilon
## epsb epsd epsel epsint epsperturb epspivot
## 1e-10 1e-09 1e-12 1e-07 1e-05 2e-07
##
## $improve
## [1] "dualfeas" "thetagap"
##
## $infinite
## [1] 1e+30
##
## $maxpivot
## [1] 250
##
## $mip.gap
## absolute relative
## 1e-11 1e-11
##
## $negrange
## [1] -1e+06
##
## $obj.in.basis
## [1] TRUE
##
## $pivoting
## [1] "devex" "adaptive"
##
## $presolve
## [1] "none"
##
## $scalelimit
## [1] 5
##
## $scaling
## [1] "geometric" "equilibrate" "integers"
##
## $sense
## [1] "maximize"
##
## $simplextype
## [1] "dual" "primal"
##
## $timeout
## [1] 0
##
## $verbose
## [1] "neutral"
set.objfn(lprec, c(275.691, 48.341))
add.constraint(lprec, c(1, 1), "<=", 350000)
add.constraint(lprec, c(1, 0), ">=", 15000)
add.constraint(lprec, c(0, 1), ">=", 75000)
add.constraint(lprec, c(2, -1), "=", 0)
lprec
## Model name:
## C1 C2
## Maximize 275.691 48.341
## R1 1 1 <= 350000
## R2 1 0 >= 15000
## R3 0 1 >= 75000
## R4 2 -1 = 0
## Kind Std Std
## Type Real Real
## Upper Inf Inf
## Lower 0 0
# solve
solve(lprec)
## [1] 0
get.objective(lprec)
## [1] 43443517
get.variables(lprec)
## [1] 116666.7 233333.3
Name your dataset ‘mydata’ so it easy to work with.
Commands: read_csv() head()
mydata <- read.csv("data/ServersCost.csv")
head(mydata)
## servers cost
## 1 1 27654
## 2 2 24789
## 3 3 21890
## 4 4 21633
## 5 5 15843
## 6 6 12567
servers <- mydata$servers
cost <- mydata$cost
Corr <- cor(mydata)
Corr
## servers cost
## servers 1.00000000 0.03356606
## cost 0.03356606 1.00000000
The correlation between servers and cost is positive, however it is not strong.
Commands: p <- qplot( x = INDEPENDENT, y = DEPENDENT, data = mydata) + geom_point()
#plot <- qplot( x = servers, y = cost, data = mydata) + geom_point()
Commmand: p + geom_smooth(method = “lm”)
#plot + geom_smooth(method = "lm")
linear_model <- lm( cost ~ servers, data =mydata )
linear_model
##
## Call:
## lm(formula = cost ~ servers, data = mydata)
##
## Coefficients:
## (Intercept) servers
## 14747 48
summary(linear_model)
##
## Call:
## lm(formula = cost ~ servers, data = mydata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10646.2 -8646.2 -544.7 7066.0 12858.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14747.2 4035.5 3.654 0.00181 **
## servers 48.0 336.9 0.142 0.88828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8687 on 18 degrees of freedom
## Multiple R-squared: 0.001127, Adjusted R-squared: -0.05437
## F-statistic: 0.0203 on 1 and 18 DF, p-value: 0.8883
We use a transformation and use a nonlinear quadratic model to see how the model fits to the data.
Quadratic Model: y = x + x^2
servers = mydata$servers
servers_squared = mydata$servers^2
quad_model = lm(cost ~ servers + servers_squared)
quad_model
##
## Call:
## lm(formula = cost ~ servers + servers_squared)
##
## Coefficients:
## (Intercept) servers servers_squared
## 35417.8 -5589.4 268.4
summary(quad_model)
##
## Call:
## lm(formula = cost ~ servers + servers_squared)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2897.8 -1553.4 -513.2 1152.4 4752.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35417.77 1742.64 20.32 2.30e-13 ***
## servers -5589.43 382.19 -14.62 4.62e-11 ***
## servers_squared 268.45 17.68 15.19 2.55e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2342 on 17 degrees of freedom
## Multiple R-squared: 0.9314, Adjusted R-squared: 0.9233
## F-statistic: 115.4 on 2 and 17 DF, p-value: 1.282e-10
Commands: predicted_2 <- predict( quad_model, data = mydata )
servers2 = servers^2
quad_model = lm(cost ~ servers + servers2 )
predicted2 = predict(quad_model,data=mydata)
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
#qplot( x = servers, y = predicted2, colour = "red")
servers_cubed = mydata$servers^3
cubic_model = lm(cost ~ servers + servers_squared + servers_cubed)
cubic_model
##
## Call:
## lm(formula = cost ~ servers + servers_squared + servers_cubed)
##
## Coefficients:
## (Intercept) servers servers_squared servers_cubed
## 36133.696 -5954.738 310.895 -1.347
summary(cubic_model)
##
## Call:
## lm(formula = cost ~ servers + servers_squared + servers_cubed)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2871.0 -1435.1 -473.6 1271.8 4600.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36133.696 2625.976 13.760 2.77e-10 ***
## servers -5954.738 1056.596 -5.636 3.72e-05 ***
## servers_squared 310.895 115.431 2.693 0.016 *
## servers_cubed -1.347 3.619 -0.372 0.715
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2404 on 16 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.9193
## F-statistic: 73.11 on 3 and 16 DF, p-value: 1.478e-09
Commands: predicted3 <- predict( cubic_model, data = mydata )
predicted3 <- predict( cubic_model, data = mydata )
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
#qplot( x = servers, y = predicted3, colour = "red")
variables: LINEAR_MODEL , PREDICTED_QUADRATIC, PREDICTED_CUBIC
# Black = Actual Data
plot(servers, cost, pch = 16)
# Blue = Linear Line based on Linear Regression Model
abline(linear_model, col = "blue", lwd = 2)
# Red = Quadratic Model based on Quadratric Regression found above
# Needed to overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted2, col = "red", pch = 16)
# Green = Cubic Model based on Cubic Regression found above
# Overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted3, col = "green", pch = 16)