HW2

# 讀進package中的檔案,檢視形態
pacman::p_load(Ecdat)
pacman::p_load(dplyr)
str(Caschool)
## 'data.frame':    420 obs. of  17 variables:
##  $ distcod : int  75119 61499 61549 61457 61523 62042 68536 63834 62331 67306 ...
##  $ county  : Factor w/ 45 levels "Alameda","Butte",..: 1 2 2 2 2 6 29 11 6 25 ...
##  $ district: Factor w/ 409 levels "Ackerman Elementary",..: 362 214 367 132 270 53 152 383 263 94 ...
##  $ grspan  : Factor w/ 2 levels "KK-06","KK-08": 2 2 2 2 2 2 2 2 2 1 ...
##  $ enrltot : int  195 240 1550 243 1335 137 195 888 379 2247 ...
##  $ teachers: num  10.9 11.1 82.9 14 71.5 ...
##  $ calwpct : num  0.51 15.42 55.03 36.48 33.11 ...
##  $ mealpct : num  2.04 47.92 76.32 77.05 78.43 ...
##  $ computer: int  67 101 169 85 171 25 28 66 35 0 ...
##  $ testscr : num  691 661 644 648 641 ...
##  $ compstu : num  0.344 0.421 0.109 0.35 0.128 ...
##  $ expnstu : num  6385 5099 5502 7102 5236 ...
##  $ str     : num  17.9 21.5 18.7 17.4 18.7 ...
##  $ avginc  : num  22.69 9.82 8.98 8.98 9.08 ...
##  $ elpct   : num  0 4.58 30 0 13.86 ...
##  $ readscr : num  692 660 636 652 642 ...
##  $ mathscr : num  690 662 651 644 640 ...
# 設定種子數量
set.seed(20180327)
# 進行wrangling與繪圖
dta1 <- Caschool %>% 
  group_by(county) %>% 
  sample_n(1)

with(dta1, plot(mathscr ~ readscr, 
                xlab = "average math score", 
                ylab = "average reading score"))

HW3

## 設定換行、小數點與寬度
options(continue="  ") 
options(digits=3) 
options(width=72)
# 讀取檔案並從網站存取 
ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")
# 載入package並選擇變項
newds = select(ds, cesd, female, i1, i2, id, treat, f1a, f1b, f1c, f1d, f1e, f1f, f1g, f1h, f1i, f1j, f1k, f1l, f1m, f1n, f1o, f1p, f1q, f1r, f1s, f1t)
## 檢視資料名稱與結構
names(newds) 
##  [1] "cesd"   "female" "i1"     "i2"     "id"     "treat"  "f1a"   
##  [8] "f1b"    "f1c"    "f1d"    "f1e"    "f1f"    "f1g"    "f1h"   
## [15] "f1i"    "f1j"    "f1k"    "f1l"    "f1m"    "f1n"    "f1o"   
## [22] "f1p"    "f1q"    "f1r"    "f1s"    "f1t"
str(newds[,1:10])  
## 'data.frame':    453 obs. of  10 variables:
##  $ cesd  : int  49 30 39 15 39 6 52 32 50 46 ...
##  $ female: int  0 0 0 1 0 1 1 0 1 0 ...
##  $ i1    : int  13 56 0 5 10 4 13 12 71 20 ...
##  $ i2    : int  26 62 0 5 13 4 20 24 129 27 ...
##  $ id    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ treat : int  1 1 0 0 0 1 0 1 0 1 ...
##  $ f1a   : int  3 3 3 0 3 1 3 1 3 2 ...
##  $ f1b   : int  2 2 2 0 0 0 1 1 2 3 ...
##  $ f1c   : int  3 0 3 1 3 1 3 2 3 3 ...
##  $ f1d   : int  0 3 0 3 3 3 1 3 1 0 ...
summary(newds[,1:10]) 
##       cesd          female            i1              i2       
##  Min.   : 1.0   Min.   :0.000   Min.   :  0.0   Min.   :  0.0  
##  1st Qu.:25.0   1st Qu.:0.000   1st Qu.:  3.0   1st Qu.:  3.0  
##  Median :34.0   Median :0.000   Median : 13.0   Median : 15.0  
##  Mean   :32.8   Mean   :0.236   Mean   : 17.9   Mean   : 22.6  
##  3rd Qu.:41.0   3rd Qu.:0.000   3rd Qu.: 26.0   3rd Qu.: 32.0  
##  Max.   :60.0   Max.   :1.000   Max.   :142.0   Max.   :184.0  
##        id          treat            f1a            f1b      
##  Min.   :  1   Min.   :0.000   Min.   :0.00   Min.   :0.00  
##  1st Qu.:119   1st Qu.:0.000   1st Qu.:1.00   1st Qu.:0.00  
##  Median :233   Median :0.000   Median :2.00   Median :1.00  
##  Mean   :233   Mean   :0.497   Mean   :1.63   Mean   :1.39  
##  3rd Qu.:348   3rd Qu.:1.000   3rd Qu.:3.00   3rd Qu.:2.00  
##  Max.   :470   Max.   :1.000   Max.   :3.00   Max.   :3.00  
##       f1c            f1d      
##  Min.   :0.00   Min.   :0.00  
##  1st Qu.:1.00   1st Qu.:0.00  
##  Median :2.00   Median :1.00  
##  Mean   :1.92   Mean   :1.56  
##  3rd Qu.:3.00   3rd Qu.:3.00  
##  Max.   :3.00   Max.   :3.00
head(newds, n=3) 
##   cesd female i1 i2 id treat f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j
## 1   49      0 13 26  1     1   3   2   3   0   2   3   3   0   2   3
## 2   30      0 56 62  2     1   3   2   0   3   3   2   0   0   3   0
## 3   39      0  0  0  3     0   3   2   3   0   2   2   1   3   2   3
##   f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t
## 1   3   0   1   2   2   2   2   3   3   2
## 2   3   0   0   3   0   0   0   2   0   0
## 3   1   0   1   3   2   0   0   3   2   0
# 加入註腳
comment(newds) = "HELP baseline dataset" 
comment(newds) 
## [1] "HELP baseline dataset"
# 存檔
save(ds, file="savedfile")

## 輸出資料為csv,以及可供不同軟體的格式
write.csv(ds, file="ds.csv") 

library(foreign) 
write.foreign(newds, "file.dat", "file.sas", package="SAS")

## 檢視各種形式下的dataframe
with(newds, cesd[1:10]) 
##  [1] 49 30 39 15 39  6 52 32 50 46
with(newds, head(cesd, 10))
##  [1] 49 30 39 15 39  6 52 32 50 46
with(newds, cesd[cesd > 56]) 
## [1] 57 58 57 60 58 58 57
## 整理資料
library(dplyr)
# 選擇newds中cesd大於56的觀察值,並檢視其id和cesd
filter(newds, cesd > 56) %>% select(id, cesd) 
## Warning: package 'bindrcpp' was built under R version 3.4.3
##    id cesd
## 1  71   57
## 2 127   58
## 3 200   57
## 4 228   60
## 5 273   58
## 6 351   58
## 7  13   57
## 檢視vector
with(newds, sort(cesd)[1:4])
## [1] 1 3 3 4
with(newds, which.min(cesd))
## [1] 199
## 檢查資料
library(mosaic)
## Warning: package 'mosaic' was built under R version 3.4.3
## Loading required package: ggformula
## Warning: package 'ggformula' was built under R version 3.4.3
## 
## New to ggformula?  Try the tutorials: 
##  learnr::run_tutorial("introduction", package = "ggformula")
##  learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Warning: package 'mosaicData' was built under R version 3.4.3
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
## 
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following object is masked from 'package:memisc':
## 
##     sample
## The following object is masked from 'package:purrr':
## 
##     cross
## The following objects are masked from 'package:car':
## 
##     deltaMethod, logit
## The following object is masked from 'package:lme4':
## 
##     factorize
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median,
##     prop.test, quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
# 取代na
tally(~ is.na(f1g), data=newds)
## is.na(f1g)
##  TRUE FALSE 
##     1   452
favstats(~ f1g, data=newds) #      1
##  min Q1 median Q3 max mean  sd   n missing
##    0  1      2  3   3 1.73 1.1 452       1
## 編碼並計算NA次數
cesditems = with(newds, cbind(f1a, f1b, f1c, (3 - f1d), f1e, f1f, f1g, 
   (3 - f1h), f1i, f1j, f1k, (3 - f1l), f1m, f1n, f1o, (3 - f1p), 
   f1q, f1r, f1s, f1t))
nmisscesd = apply(is.na(cesditems), 1, sum) 
ncesditems = cesditems 
ncesditems[is.na(cesditems)] = 0
newcesd = apply(ncesditems, 1, sum)
# 最後將na以平均值取代
imputemeancesd = 20/(20-nmisscesd)*newcesd

## 列出將NA改成其他數值的表格
data.frame(newcesd, newds$cesd, nmisscesd, imputemeancesd)[nmisscesd>0,]
##     newcesd newds.cesd nmisscesd imputemeancesd
## 4        15         15         1           15.8
## 17       19         19         1           20.0
## 87       44         44         1           46.3
## 101      17         17         1           17.9
## 154      29         29         1           30.5
## 177      44         44         1           46.3
## 229      39         39         1           41.1
## 將連續資料重新定義成類別資料
library(dplyr) # mutate來自dplyr
library(memisc) # cases來自memisc
newds = mutate(newds, drinkstat= 
  cases("abstinent" = i1==0,
        "moderate" = (i1>0 & i1<=1 & i2<=3 & female==1) | (i1>0 & i1<=2 & i2<=4 & female==0),
        "highrisk" = ((i1>1 | i2>3) & female==1) | ((i1>2 | i2>4) & female==0)))
library(mosaic); detach(package:memisc); detach(package:MASS)

## 檢視資料
library(dplyr)
tmpds = select(newds, i1, i2, female, drinkstat)
tmpds[365:370,]
##     i1 i2 female drinkstat
## 365  6 24      0  highrisk
## 366  6  6      0  highrisk
## 367  0  0      0 abstinent
## 368  0  0      1 abstinent
## 369  8  8      0  highrisk
## 370 32 32      0  highrisk
# 檢視tmpds內飲酒程度為中的女性
filter(tmpds, drinkstat=="moderate" & female==1) # 
##   i1 i2 female drinkstat
## 1  1  1      1  moderate
## 2  1  3      1  moderate
## 3  1  2      1  moderate
## 4  1  1      1  moderate
## 5  1  1      1  moderate
## 6  1  1      1  moderate
## 7  1  1      1  moderate
## 製作交叉列聯表
library(gmodels)
with(tmpds, CrossTable(drinkstat))
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |         N / Table Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  453 
## 
##  
##           | abstinent |  moderate |  highrisk | 
##           |-----------|-----------|-----------|
##           |        68 |        28 |       357 | 
##           |     0.150 |     0.062 |     0.788 | 
##           |-----------|-----------|-----------|
## 
## 
## 
## 
with(tmpds, CrossTable(drinkstat, female, 
  prop.t=FALSE, prop.c=FALSE, prop.chisq=FALSE)) # 
## 
##  
##    Cell Contents
## |-------------------------|
## |                       N |
## |           N / Row Total |
## |-------------------------|
## 
##  
## Total Observations in Table:  453 
## 
##  
##              | female 
##    drinkstat |         0 |         1 | Row Total | 
## -------------|-----------|-----------|-----------|
##    abstinent |        42 |        26 |        68 | 
##              |     0.618 |     0.382 |     0.150 | 
## -------------|-----------|-----------|-----------|
##     moderate |        21 |         7 |        28 | 
##              |     0.750 |     0.250 |     0.062 | 
## -------------|-----------|-----------|-----------|
##     highrisk |       283 |        74 |       357 | 
##              |     0.793 |     0.207 |     0.788 | 
## -------------|-----------|-----------|-----------|
## Column Total |       346 |       107 |       453 | 
## -------------|-----------|-----------|-----------|
## 
## 
## 根據女性(0, 1)變項創一個性別("Male","Female")變項
newds = transform(newds, 
  gender=factor(female, c(0,1), c("Male","Female")))
tally(~ female + gender, margin=FALSE, data=newds)
##       gender
## female Male Female
##      0  346      0
##      1    0    107
library(dplyr)
newds = arrange(ds, cesd, i1) 
# 使用cesd和id對ds進行排序
newds[1:5, c("cesd", "i1", "id")]
##   cesd i1  id
## 1    1  3 233
## 2    3  1 139
## 3    3 13 418
## 4    4  4 251
## 5    4  9  95
# 對ds中的女性進行計算
females = filter(ds, female==1)
with(females, mean(cesd)) 
## [1] 36.9
mean(ds$cesd[ds$female==1])
## [1] 36.9
# 計算男女的cesd平均值
with(ds, tapply(cesd, female, mean))
##    0    1 
## 31.6 36.9
library(mosaic)
mean(cesd ~ female, data=ds)
##    0    1 
## 31.6 36.9

HW4

# 讀取與檢視檔案
pacman::p_load(HSAUR3)
head(dta4 <- backpain)
##   ID  status driver suburban
## 1  1    case    yes      yes
## 2  1 control    yes       no
## 3  2    case    yes      yes
## 4  2 control    yes      yes
## 5  3    case    yes       no
## 6  3 control    yes      yes
# Summarize and wrangling
dta4 <- backpain %>% 
  group_by(status, driver, suburban) %>% 
  summarise(n = n()) %>% 
  ungroup() %>% 
  spread(status, n) %>% 
  mutate(total = case + control); dta4
## # A tibble: 4 x 5
##   driver suburban  case control total
##   <fct>  <fct>    <int>   <int> <int>
## 1 no     no          26      47    73
## 2 no     yes          6       7    13
## 3 yes    no          64      63   127
## 4 yes    yes        121     100   221

HW5

# 讀取datasets
library(datasets)

# 以rowname為基礎對檔案進行merge
dta5 <- merge(state.x77, USArrests, "row.names")

# 列出所有連續變項的平行相關
cor(dta5[, -1])
##            Population  Income Illiteracy Life Exp Murder.x HS Grad
## Population     1.0000  0.2082     0.1076  -0.0681   0.3436 -0.0985
## Income         0.2082  1.0000    -0.4371   0.3403  -0.2301  0.6199
## Illiteracy     0.1076 -0.4371     1.0000  -0.5885   0.7030 -0.6572
## Life Exp      -0.0681  0.3403    -0.5885   1.0000  -0.7808  0.5822
## Murder.x       0.3436 -0.2301     0.7030  -0.7808   1.0000 -0.4880
## HS Grad       -0.0985  0.6199    -0.6572   0.5822  -0.4880  1.0000
## Frost         -0.3322  0.2263    -0.6719   0.2621  -0.5389  0.3668
## Area           0.0225  0.3633     0.0773  -0.1073   0.2284  0.3335
## Murder.y       0.3202 -0.2152     0.7068  -0.7785   0.9337 -0.5216
## Assault        0.3170  0.0409     0.5110  -0.6267   0.7398 -0.2303
## UrbanPop       0.5126  0.4805    -0.0622   0.2715   0.0164  0.3587
## Rape           0.3052  0.3574     0.1546  -0.2696   0.5800  0.2707
##              Frost    Area Murder.y Assault UrbanPop   Rape
## Population -0.3322  0.0225   0.3202  0.3170   0.5126  0.305
## Income      0.2263  0.3633  -0.2152  0.0409   0.4805  0.357
## Illiteracy -0.6719  0.0773   0.7068  0.5110  -0.0622  0.155
## Life Exp    0.2621 -0.1073  -0.7785 -0.6267   0.2715 -0.270
## Murder.x   -0.5389  0.2284   0.9337  0.7398   0.0164  0.580
## HS Grad     0.3668  0.3335  -0.5216 -0.2303   0.3587  0.271
## Frost       1.0000  0.0592  -0.5414 -0.4682  -0.2462 -0.279
## Area        0.0592  1.0000   0.1481  0.2312  -0.0615  0.525
## Murder.y   -0.5414  0.1481   1.0000  0.8019   0.0696  0.564
## Assault    -0.4682  0.2312   0.8019  1.0000   0.2589  0.665
## UrbanPop   -0.2462 -0.0615   0.0696  0.2589   1.0000  0.411
## Rape       -0.2792  0.5250   0.5636  0.6652   0.4113  1.000
# ggpairs
ggpairs(dta5[, -1])

## HW6

# 讀取檔案package
library(MASS)
## Warning: package 'MASS' was built under R version 3.4.3
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## The following object is masked from 'package:Ecdat':
## 
##     SP500
# 對檔案進行merge
dta6 <- merge(rownames_to_column(mammals), rownames_to_column(Animals), all = TRUE)
# duplicated
duplicated(dta6)
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE
dim(dta6)
## [1] 67  3

HW7

# 檔案與表格整理
dta7 <- Caschool %>% 
  mutate(ratio = enrltot/teachers, 
         Reading = cut(readscr, breaks = quantile(readscr, probs = c(0, .33, .67, 1)), 
                   label = c("L", "M", "H"), ordered = T))

# 繪圖
library(lattice)
xyplot(readscr ~ ratio | Reading, data = dta7,
                type = c("p", "g", "r"), layout = c(3, 1),
                xlab = "Student-Teacher Ratio",
                ylab = "Reading Score")

## HW8

# 載入package以讀取檔案 
pacman::p_load(car)

# 檢視檔案
head(Prestige)
##                     education income women prestige census type
## gov.administrators       13.1  12351 11.16     68.8   1113 prof
## general.managers         12.3  25879  4.02     69.1   1130 prof
## accountants              12.8   9271 15.70     63.4   1171 prof
## purchasing.officers      11.4   8865  9.11     56.8   1175 prof
## chemists                 14.6   8403 11.68     73.5   2111 prof
## physicists               15.6  11030  5.13     77.6   2113 prof
str(Prestige)
## 'data.frame':    102 obs. of  6 variables:
##  $ education: num  13.1 12.3 12.8 11.4 14.6 ...
##  $ income   : int  12351 25879 9271 8865 8403 11030 8258 14163 11377 11023 ...
##  $ women    : num  11.16 4.02 15.7 9.11 11.68 ...
##  $ prestige : num  68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8 ...
##  $ census   : int  1113 1130 1171 1175 2111 2113 2133 2141 2143 2153 ...
##  $ type     : Factor w/ 3 levels "bc","prof","wc": 2 2 2 2 2 2 2 2 2 2 ...

HW8.1

# Summarize
dta8.1 <- Prestige %>% 
  group_by(type) %>% 
  summarize(m = median(prestige, na.rm = TRUE)); dta8.1
## # A tibble: 4 x 2
##   type      m
##   <fct> <dbl>
## 1 bc     35.9
## 2 prof   68.4
## 3 wc     41.5
## 4 <NA>   35.0

HW8.2

# 整理檔案與表格
dta8.2 <- Prestige %>% 
  na.omit %>% 
  group_by(type) %>% 
  mutate(m = median(prestige),
         PrestigeLevel = memisc::cases("High" = prestige >= m,
                                       "Low" = prestige < m))

# 進行繪圖
xyplot(income ~ education |type, 
       group = PrestigeLevel, 
       data = dta8.2, 
       type = c("p", "g", "r"),
       layout = c(3, 1),
       auto.key = list(columns = 2),
       xlab = "Average education of occupational incumbents in 1971",
       ylab = "Average income of incumbents in 1971")

從結果可發現,職業類別之聲望高低對於教育程度與收入之間關係存在不同的效果與關係。

HW9

# load data package
pacman::p_load(mlmRev)

# view data structure
head(Hsb82)
##   school minrty     sx    ses  mAch meanses sector    cses
## 1   1224     No Female -1.528  5.88  -0.434 Public -1.0936
## 2   1224     No Female -0.588 19.71  -0.434 Public -0.1536
## 3   1224     No   Male -0.528 20.35  -0.434 Public -0.0936
## 4   1224     No   Male -0.668  8.78  -0.434 Public -0.2336
## 5   1224     No   Male -0.158 17.90  -0.434 Public  0.2764
## 6   1224     No   Male  0.022  4.58  -0.434 Public  0.4564
# wrangling
dta9 <- Hsb82 %>%
  group_by(school) %>%
  summarise(m_math = mean(mAch, na.rm = TRUE),
            sd_math = sd(mAch, na.rm = TRUE),
            n_math = n()) %>%
  mutate(se_math = sd_math / sqrt(n_math),
         lower.ci = m_math - qt(1 - (0.05 / 2), n_math - 1) * se_math,
         upper.ci = m_math + qt(1 - (0.05 / 2), n_math - 1) * se_math) %>% 
  dplyr::select(lower.ci, upper.ci)

# view the answer
head(dta9)
## # A tibble: 6 x 2
##   lower.ci upper.ci
##      <dbl>    <dbl>
## 1     2.00     7.11
## 2     2.29     6.19
## 3     4.51     7.11
## 4     2.66     5.99
## 5     4.51     7.44
## 6     4.96     9.58