# 讀進package中的檔案,檢視形態
pacman::p_load(Ecdat)
pacman::p_load(dplyr)
str(Caschool)
## 'data.frame': 420 obs. of 17 variables:
## $ distcod : int 75119 61499 61549 61457 61523 62042 68536 63834 62331 67306 ...
## $ county : Factor w/ 45 levels "Alameda","Butte",..: 1 2 2 2 2 6 29 11 6 25 ...
## $ district: Factor w/ 409 levels "Ackerman Elementary",..: 362 214 367 132 270 53 152 383 263 94 ...
## $ grspan : Factor w/ 2 levels "KK-06","KK-08": 2 2 2 2 2 2 2 2 2 1 ...
## $ enrltot : int 195 240 1550 243 1335 137 195 888 379 2247 ...
## $ teachers: num 10.9 11.1 82.9 14 71.5 ...
## $ calwpct : num 0.51 15.42 55.03 36.48 33.11 ...
## $ mealpct : num 2.04 47.92 76.32 77.05 78.43 ...
## $ computer: int 67 101 169 85 171 25 28 66 35 0 ...
## $ testscr : num 691 661 644 648 641 ...
## $ compstu : num 0.344 0.421 0.109 0.35 0.128 ...
## $ expnstu : num 6385 5099 5502 7102 5236 ...
## $ str : num 17.9 21.5 18.7 17.4 18.7 ...
## $ avginc : num 22.69 9.82 8.98 8.98 9.08 ...
## $ elpct : num 0 4.58 30 0 13.86 ...
## $ readscr : num 692 660 636 652 642 ...
## $ mathscr : num 690 662 651 644 640 ...
# 設定種子數量
set.seed(20180327)
# 進行wrangling與繪圖
dta1 <- Caschool %>%
group_by(county) %>%
sample_n(1)
with(dta1, plot(mathscr ~ readscr,
xlab = "average math score",
ylab = "average reading score"))
## 設定換行、小數點與寬度
options(continue=" ")
options(digits=3)
options(width=72)
# 讀取檔案並從網站存取
ds = read.csv("http://www.amherst.edu/~nhorton/r2/datasets/help.csv")
# 載入package並選擇變項
newds = select(ds, cesd, female, i1, i2, id, treat, f1a, f1b, f1c, f1d, f1e, f1f, f1g, f1h, f1i, f1j, f1k, f1l, f1m, f1n, f1o, f1p, f1q, f1r, f1s, f1t)
## 檢視資料名稱與結構
names(newds)
## [1] "cesd" "female" "i1" "i2" "id" "treat" "f1a"
## [8] "f1b" "f1c" "f1d" "f1e" "f1f" "f1g" "f1h"
## [15] "f1i" "f1j" "f1k" "f1l" "f1m" "f1n" "f1o"
## [22] "f1p" "f1q" "f1r" "f1s" "f1t"
str(newds[,1:10])
## 'data.frame': 453 obs. of 10 variables:
## $ cesd : int 49 30 39 15 39 6 52 32 50 46 ...
## $ female: int 0 0 0 1 0 1 1 0 1 0 ...
## $ i1 : int 13 56 0 5 10 4 13 12 71 20 ...
## $ i2 : int 26 62 0 5 13 4 20 24 129 27 ...
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ treat : int 1 1 0 0 0 1 0 1 0 1 ...
## $ f1a : int 3 3 3 0 3 1 3 1 3 2 ...
## $ f1b : int 2 2 2 0 0 0 1 1 2 3 ...
## $ f1c : int 3 0 3 1 3 1 3 2 3 3 ...
## $ f1d : int 0 3 0 3 3 3 1 3 1 0 ...
summary(newds[,1:10])
## cesd female i1 i2
## Min. : 1.0 Min. :0.000 Min. : 0.0 Min. : 0.0
## 1st Qu.:25.0 1st Qu.:0.000 1st Qu.: 3.0 1st Qu.: 3.0
## Median :34.0 Median :0.000 Median : 13.0 Median : 15.0
## Mean :32.8 Mean :0.236 Mean : 17.9 Mean : 22.6
## 3rd Qu.:41.0 3rd Qu.:0.000 3rd Qu.: 26.0 3rd Qu.: 32.0
## Max. :60.0 Max. :1.000 Max. :142.0 Max. :184.0
## id treat f1a f1b
## Min. : 1 Min. :0.000 Min. :0.00 Min. :0.00
## 1st Qu.:119 1st Qu.:0.000 1st Qu.:1.00 1st Qu.:0.00
## Median :233 Median :0.000 Median :2.00 Median :1.00
## Mean :233 Mean :0.497 Mean :1.63 Mean :1.39
## 3rd Qu.:348 3rd Qu.:1.000 3rd Qu.:3.00 3rd Qu.:2.00
## Max. :470 Max. :1.000 Max. :3.00 Max. :3.00
## f1c f1d
## Min. :0.00 Min. :0.00
## 1st Qu.:1.00 1st Qu.:0.00
## Median :2.00 Median :1.00
## Mean :1.92 Mean :1.56
## 3rd Qu.:3.00 3rd Qu.:3.00
## Max. :3.00 Max. :3.00
head(newds, n=3)
## cesd female i1 i2 id treat f1a f1b f1c f1d f1e f1f f1g f1h f1i f1j
## 1 49 0 13 26 1 1 3 2 3 0 2 3 3 0 2 3
## 2 30 0 56 62 2 1 3 2 0 3 3 2 0 0 3 0
## 3 39 0 0 0 3 0 3 2 3 0 2 2 1 3 2 3
## f1k f1l f1m f1n f1o f1p f1q f1r f1s f1t
## 1 3 0 1 2 2 2 2 3 3 2
## 2 3 0 0 3 0 0 0 2 0 0
## 3 1 0 1 3 2 0 0 3 2 0
# 加入註腳
comment(newds) = "HELP baseline dataset"
comment(newds)
## [1] "HELP baseline dataset"
# 存檔
save(ds, file="savedfile")
## 輸出資料為csv,以及可供不同軟體的格式
write.csv(ds, file="ds.csv")
library(foreign)
write.foreign(newds, "file.dat", "file.sas", package="SAS")
## 檢視各種形式下的dataframe
with(newds, cesd[1:10])
## [1] 49 30 39 15 39 6 52 32 50 46
with(newds, head(cesd, 10))
## [1] 49 30 39 15 39 6 52 32 50 46
with(newds, cesd[cesd > 56])
## [1] 57 58 57 60 58 58 57
## 整理資料
library(dplyr)
# 選擇newds中cesd大於56的觀察值,並檢視其id和cesd
filter(newds, cesd > 56) %>% select(id, cesd)
## Warning: package 'bindrcpp' was built under R version 3.4.3
## id cesd
## 1 71 57
## 2 127 58
## 3 200 57
## 4 228 60
## 5 273 58
## 6 351 58
## 7 13 57
## 檢視vector
with(newds, sort(cesd)[1:4])
## [1] 1 3 3 4
with(newds, which.min(cesd))
## [1] 199
## 檢查資料
library(mosaic)
## Warning: package 'mosaic' was built under R version 3.4.3
## Loading required package: ggformula
## Warning: package 'ggformula' was built under R version 3.4.3
##
## New to ggformula? Try the tutorials:
## learnr::run_tutorial("introduction", package = "ggformula")
## learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Warning: package 'mosaicData' was built under R version 3.4.3
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:memisc':
##
## sample
## The following object is masked from 'package:purrr':
##
## cross
## The following objects are masked from 'package:car':
##
## deltaMethod, logit
## The following object is masked from 'package:lme4':
##
## factorize
## The following object is masked from 'package:Matrix':
##
## mean
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median,
## prop.test, quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
# 取代na
tally(~ is.na(f1g), data=newds)
## is.na(f1g)
## TRUE FALSE
## 1 452
favstats(~ f1g, data=newds) # 1
## min Q1 median Q3 max mean sd n missing
## 0 1 2 3 3 1.73 1.1 452 1
## 編碼並計算NA次數
cesditems = with(newds, cbind(f1a, f1b, f1c, (3 - f1d), f1e, f1f, f1g,
(3 - f1h), f1i, f1j, f1k, (3 - f1l), f1m, f1n, f1o, (3 - f1p),
f1q, f1r, f1s, f1t))
nmisscesd = apply(is.na(cesditems), 1, sum)
ncesditems = cesditems
ncesditems[is.na(cesditems)] = 0
newcesd = apply(ncesditems, 1, sum)
# 最後將na以平均值取代
imputemeancesd = 20/(20-nmisscesd)*newcesd
## 列出將NA改成其他數值的表格
data.frame(newcesd, newds$cesd, nmisscesd, imputemeancesd)[nmisscesd>0,]
## newcesd newds.cesd nmisscesd imputemeancesd
## 4 15 15 1 15.8
## 17 19 19 1 20.0
## 87 44 44 1 46.3
## 101 17 17 1 17.9
## 154 29 29 1 30.5
## 177 44 44 1 46.3
## 229 39 39 1 41.1
## 將連續資料重新定義成類別資料
library(dplyr) # mutate來自dplyr
library(memisc) # cases來自memisc
newds = mutate(newds, drinkstat=
cases("abstinent" = i1==0,
"moderate" = (i1>0 & i1<=1 & i2<=3 & female==1) | (i1>0 & i1<=2 & i2<=4 & female==0),
"highrisk" = ((i1>1 | i2>3) & female==1) | ((i1>2 | i2>4) & female==0)))
library(mosaic); detach(package:memisc); detach(package:MASS)
## 檢視資料
library(dplyr)
tmpds = select(newds, i1, i2, female, drinkstat)
tmpds[365:370,]
## i1 i2 female drinkstat
## 365 6 24 0 highrisk
## 366 6 6 0 highrisk
## 367 0 0 0 abstinent
## 368 0 0 1 abstinent
## 369 8 8 0 highrisk
## 370 32 32 0 highrisk
# 檢視tmpds內飲酒程度為中的女性
filter(tmpds, drinkstat=="moderate" & female==1) #
## i1 i2 female drinkstat
## 1 1 1 1 moderate
## 2 1 3 1 moderate
## 3 1 2 1 moderate
## 4 1 1 1 moderate
## 5 1 1 1 moderate
## 6 1 1 1 moderate
## 7 1 1 1 moderate
## 製作交叉列聯表
library(gmodels)
with(tmpds, CrossTable(drinkstat))
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Table Total |
## |-------------------------|
##
##
## Total Observations in Table: 453
##
##
## | abstinent | moderate | highrisk |
## |-----------|-----------|-----------|
## | 68 | 28 | 357 |
## | 0.150 | 0.062 | 0.788 |
## |-----------|-----------|-----------|
##
##
##
##
with(tmpds, CrossTable(drinkstat, female,
prop.t=FALSE, prop.c=FALSE, prop.chisq=FALSE)) #
##
##
## Cell Contents
## |-------------------------|
## | N |
## | N / Row Total |
## |-------------------------|
##
##
## Total Observations in Table: 453
##
##
## | female
## drinkstat | 0 | 1 | Row Total |
## -------------|-----------|-----------|-----------|
## abstinent | 42 | 26 | 68 |
## | 0.618 | 0.382 | 0.150 |
## -------------|-----------|-----------|-----------|
## moderate | 21 | 7 | 28 |
## | 0.750 | 0.250 | 0.062 |
## -------------|-----------|-----------|-----------|
## highrisk | 283 | 74 | 357 |
## | 0.793 | 0.207 | 0.788 |
## -------------|-----------|-----------|-----------|
## Column Total | 346 | 107 | 453 |
## -------------|-----------|-----------|-----------|
##
##
## 根據女性(0, 1)變項創一個性別("Male","Female")變項
newds = transform(newds,
gender=factor(female, c(0,1), c("Male","Female")))
tally(~ female + gender, margin=FALSE, data=newds)
## gender
## female Male Female
## 0 346 0
## 1 0 107
library(dplyr)
newds = arrange(ds, cesd, i1)
# 使用cesd和id對ds進行排序
newds[1:5, c("cesd", "i1", "id")]
## cesd i1 id
## 1 1 3 233
## 2 3 1 139
## 3 3 13 418
## 4 4 4 251
## 5 4 9 95
# 對ds中的女性進行計算
females = filter(ds, female==1)
with(females, mean(cesd))
## [1] 36.9
mean(ds$cesd[ds$female==1])
## [1] 36.9
# 計算男女的cesd平均值
with(ds, tapply(cesd, female, mean))
## 0 1
## 31.6 36.9
library(mosaic)
mean(cesd ~ female, data=ds)
## 0 1
## 31.6 36.9
# 讀取與檢視檔案
pacman::p_load(HSAUR3)
head(dta4 <- backpain)
## ID status driver suburban
## 1 1 case yes yes
## 2 1 control yes no
## 3 2 case yes yes
## 4 2 control yes yes
## 5 3 case yes no
## 6 3 control yes yes
# Summarize and wrangling
dta4 <- backpain %>%
group_by(status, driver, suburban) %>%
summarise(n = n()) %>%
ungroup() %>%
spread(status, n) %>%
mutate(total = case + control); dta4
## # A tibble: 4 x 5
## driver suburban case control total
## <fct> <fct> <int> <int> <int>
## 1 no no 26 47 73
## 2 no yes 6 7 13
## 3 yes no 64 63 127
## 4 yes yes 121 100 221
# 讀取datasets
library(datasets)
# 以rowname為基礎對檔案進行merge
dta5 <- merge(state.x77, USArrests, "row.names")
# 列出所有連續變項的平行相關
cor(dta5[, -1])
## Population Income Illiteracy Life Exp Murder.x HS Grad
## Population 1.0000 0.2082 0.1076 -0.0681 0.3436 -0.0985
## Income 0.2082 1.0000 -0.4371 0.3403 -0.2301 0.6199
## Illiteracy 0.1076 -0.4371 1.0000 -0.5885 0.7030 -0.6572
## Life Exp -0.0681 0.3403 -0.5885 1.0000 -0.7808 0.5822
## Murder.x 0.3436 -0.2301 0.7030 -0.7808 1.0000 -0.4880
## HS Grad -0.0985 0.6199 -0.6572 0.5822 -0.4880 1.0000
## Frost -0.3322 0.2263 -0.6719 0.2621 -0.5389 0.3668
## Area 0.0225 0.3633 0.0773 -0.1073 0.2284 0.3335
## Murder.y 0.3202 -0.2152 0.7068 -0.7785 0.9337 -0.5216
## Assault 0.3170 0.0409 0.5110 -0.6267 0.7398 -0.2303
## UrbanPop 0.5126 0.4805 -0.0622 0.2715 0.0164 0.3587
## Rape 0.3052 0.3574 0.1546 -0.2696 0.5800 0.2707
## Frost Area Murder.y Assault UrbanPop Rape
## Population -0.3322 0.0225 0.3202 0.3170 0.5126 0.305
## Income 0.2263 0.3633 -0.2152 0.0409 0.4805 0.357
## Illiteracy -0.6719 0.0773 0.7068 0.5110 -0.0622 0.155
## Life Exp 0.2621 -0.1073 -0.7785 -0.6267 0.2715 -0.270
## Murder.x -0.5389 0.2284 0.9337 0.7398 0.0164 0.580
## HS Grad 0.3668 0.3335 -0.5216 -0.2303 0.3587 0.271
## Frost 1.0000 0.0592 -0.5414 -0.4682 -0.2462 -0.279
## Area 0.0592 1.0000 0.1481 0.2312 -0.0615 0.525
## Murder.y -0.5414 0.1481 1.0000 0.8019 0.0696 0.564
## Assault -0.4682 0.2312 0.8019 1.0000 0.2589 0.665
## UrbanPop -0.2462 -0.0615 0.0696 0.2589 1.0000 0.411
## Rape -0.2792 0.5250 0.5636 0.6652 0.4113 1.000
# ggpairs
ggpairs(dta5[, -1])
## HW6
# 讀取檔案package
library(MASS)
## Warning: package 'MASS' was built under R version 3.4.3
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## The following object is masked from 'package:Ecdat':
##
## SP500
# 對檔案進行merge
dta6 <- merge(rownames_to_column(mammals), rownames_to_column(Animals), all = TRUE)
# duplicated
duplicated(dta6)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE
dim(dta6)
## [1] 67 3
# 檔案與表格整理
dta7 <- Caschool %>%
mutate(ratio = enrltot/teachers,
Reading = cut(readscr, breaks = quantile(readscr, probs = c(0, .33, .67, 1)),
label = c("L", "M", "H"), ordered = T))
# 繪圖
library(lattice)
xyplot(readscr ~ ratio | Reading, data = dta7,
type = c("p", "g", "r"), layout = c(3, 1),
xlab = "Student-Teacher Ratio",
ylab = "Reading Score")
## HW8
# 載入package以讀取檔案
pacman::p_load(car)
# 檢視檔案
head(Prestige)
## education income women prestige census type
## gov.administrators 13.1 12351 11.16 68.8 1113 prof
## general.managers 12.3 25879 4.02 69.1 1130 prof
## accountants 12.8 9271 15.70 63.4 1171 prof
## purchasing.officers 11.4 8865 9.11 56.8 1175 prof
## chemists 14.6 8403 11.68 73.5 2111 prof
## physicists 15.6 11030 5.13 77.6 2113 prof
str(Prestige)
## 'data.frame': 102 obs. of 6 variables:
## $ education: num 13.1 12.3 12.8 11.4 14.6 ...
## $ income : int 12351 25879 9271 8865 8403 11030 8258 14163 11377 11023 ...
## $ women : num 11.16 4.02 15.7 9.11 11.68 ...
## $ prestige : num 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8 ...
## $ census : int 1113 1130 1171 1175 2111 2113 2133 2141 2143 2153 ...
## $ type : Factor w/ 3 levels "bc","prof","wc": 2 2 2 2 2 2 2 2 2 2 ...
# Summarize
dta8.1 <- Prestige %>%
group_by(type) %>%
summarize(m = median(prestige, na.rm = TRUE)); dta8.1
## # A tibble: 4 x 2
## type m
## <fct> <dbl>
## 1 bc 35.9
## 2 prof 68.4
## 3 wc 41.5
## 4 <NA> 35.0
# 整理檔案與表格
dta8.2 <- Prestige %>%
na.omit %>%
group_by(type) %>%
mutate(m = median(prestige),
PrestigeLevel = memisc::cases("High" = prestige >= m,
"Low" = prestige < m))
# 進行繪圖
xyplot(income ~ education |type,
group = PrestigeLevel,
data = dta8.2,
type = c("p", "g", "r"),
layout = c(3, 1),
auto.key = list(columns = 2),
xlab = "Average education of occupational incumbents in 1971",
ylab = "Average income of incumbents in 1971")
# load data package
pacman::p_load(mlmRev)
# view data structure
head(Hsb82)
## school minrty sx ses mAch meanses sector cses
## 1 1224 No Female -1.528 5.88 -0.434 Public -1.0936
## 2 1224 No Female -0.588 19.71 -0.434 Public -0.1536
## 3 1224 No Male -0.528 20.35 -0.434 Public -0.0936
## 4 1224 No Male -0.668 8.78 -0.434 Public -0.2336
## 5 1224 No Male -0.158 17.90 -0.434 Public 0.2764
## 6 1224 No Male 0.022 4.58 -0.434 Public 0.4564
# wrangling
dta9 <- Hsb82 %>%
group_by(school) %>%
summarise(m_math = mean(mAch, na.rm = TRUE),
sd_math = sd(mAch, na.rm = TRUE),
n_math = n()) %>%
mutate(se_math = sd_math / sqrt(n_math),
lower.ci = m_math - qt(1 - (0.05 / 2), n_math - 1) * se_math,
upper.ci = m_math + qt(1 - (0.05 / 2), n_math - 1) * se_math) %>%
dplyr::select(lower.ci, upper.ci)
# view the answer
head(dta9)
## # A tibble: 6 x 2
## lower.ci upper.ci
## <dbl> <dbl>
## 1 2.00 7.11
## 2 2.29 6.19
## 3 4.51 7.11
## 4 2.66 5.99
## 5 4.51 7.44
## 6 4.96 9.58