library(tidyverse)
library(magrittr)
library(vcd)
library(vcdExtra)
ucb <- datasets::UCBAdmissions
# (a)
dimnames(ucb)
## $Admit
## [1] "Admitted" "Rejected"
##
## $Gender
## [1] "Male" "Female"
##
## $Dept
## [1] "A" "B" "C" "D" "E" "F"
ftable(ucb)
## Dept A B C D E F
## Admit Gender
## Admitted Male 512 353 120 138 53 22
## Female 89 17 202 131 94 24
## Rejected Male 313 207 205 279 138 351
## Female 19 8 391 244 299 317
prod(dim(ucb))
## [1] 24
# (b)
apply(ucb, 3, sum)
## A B C D E F
## 933 585 918 792 584 714
# (c)
ftable(Admit ~ Dept, data = ucb) %>%
prop.table(margin = 1)
## Admit Admitted Rejected
## Dept
## A 0.64415863 0.35584137
## B 0.63247863 0.36752137
## C 0.35076253 0.64923747
## D 0.33964646 0.66035354
## E 0.25171233 0.74828767
## F 0.06442577 0.93557423
# (d)
total <- ftable(Gender ~ Dept, ucb)
admitted <- ucb["Admitted", , ] %>%
t()
admitted / total
## Gender
## Dept Male Female
## A 0.62060606 0.82407407
## B 0.63035714 0.68000000
## C 0.36923077 0.34064081
## D 0.33093525 0.34933333
## E 0.27748691 0.23918575
## F 0.05898123 0.07038123
# or
prop.table(ucb, c(3, 2))["Admitted", , ] %>%
t()
## Gender
## Dept Male Female
## A 0.62060606 0.82407407
## B 0.63035714 0.68000000
## C 0.36923077 0.34064081
## D 0.33093525 0.34933333
## E 0.27748691 0.23918575
## F 0.05898123 0.07038123
soccer <- vcd::UKSoccer
# (a)
sum(soccer)
## [1] 380
# (b)
(home <- margin.table(soccer, 1))
## Home
## 0 1 2 3 4
## 76 142 90 45 27
(away <- margin.table(soccer, 2))
## Away
## 0 1 2 3 4
## 140 136 55 38 11
# (c)
prop.table(home)
## Home
## 0 1 2 3 4
## 0.20000000 0.37368421 0.23684211 0.11842105 0.07105263
prop.table(away)
## Away
## 0 1 2 3 4
## 0.36842105 0.35789474 0.14473684 0.10000000 0.02894737
# (d)
plot(home)
plot(away)
Seems like that home team have more goals than away team.