In this lab, we will focus on linear and non-linear programming.
Linear programming, as discussed in the previous lab, works with simple and multiple linear regression techniques; sometimes the variables have completely direct or completely non-direct relationships and these techniques can model them.
Sometimes, however, the variables do not predict each other in a linear way. For example, looking at the stock market vs. time, we know that generally the market was booming before the crash, then the market crashed and the great depression hit, and slowly the market started to rise again.
This pattern is not linear, and in fact a non-linear programming technique can be used to model it and predict the value of the market based on the year.
In this lab, we will explore topics like optimization, solve a marketing model, and perform linear and non-linear regression on the cost of servers.
We are going to use tidyverse a collection of R packages designed for data science.
# Here we are checking if the package is installed
if(!require("tidyverse")){
# If the package is not in the system then it will be install
install.packages("tidyverse", dependencies = TRUE)
# Here we are loading the package
library("tidyverse")
}
## Loading required package: tidyverse
## -- Attaching packages --------------------------------------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 2.2.1 v purrr 0.2.4
## v tibble 1.4.2 v dplyr 0.7.4
## v tidyr 0.7.2 v stringr 1.2.0
## v readr 1.1.1 v forcats 0.2.0
## -- Conflicts ------------------------------------------------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
# Here we are checking if the package is installed
if(!require("plotly")){
# If the package is not in the system then it will be install
install.packages("plotly", dependencies = TRUE)
# Here we are loading the package
library("plotly")
}
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
## Loading required package: lpSolveAPI
lprec <- make.lp(0, 2)
lp.control(lprec, sense="max")
## $anti.degen
## [1] "fixedvars" "stalling"
##
## $basis.crash
## [1] "none"
##
## $bb.depthlimit
## [1] -50
##
## $bb.floorfirst
## [1] "automatic"
##
## $bb.rule
## [1] "pseudononint" "greedy" "dynamic" "rcostfixing"
##
## $break.at.first
## [1] FALSE
##
## $break.at.value
## [1] 1e+30
##
## $epsilon
## epsb epsd epsel epsint epsperturb epspivot
## 1e-10 1e-09 1e-12 1e-07 1e-05 2e-07
##
## $improve
## [1] "dualfeas" "thetagap"
##
## $infinite
## [1] 1e+30
##
## $maxpivot
## [1] 250
##
## $mip.gap
## absolute relative
## 1e-11 1e-11
##
## $negrange
## [1] -1e+06
##
## $obj.in.basis
## [1] TRUE
##
## $pivoting
## [1] "devex" "adaptive"
##
## $presolve
## [1] "none"
##
## $scalelimit
## [1] 5
##
## $scaling
## [1] "geometric" "equilibrate" "integers"
##
## $sense
## [1] "maximize"
##
## $simplextype
## [1] "dual" "primal"
##
## $timeout
## [1] 0
##
## $verbose
## [1] "neutral"
set.objfn(lprec, c(275.691, 48.341))
add.constraint(lprec, c(1, 1), "<=", 350000)
add.constraint(lprec, c(1, 0), ">=", 15000)
add.constraint(lprec, c(0, 1), ">=", 75000)
add.constraint(lprec, c(2, -1), "=", 0)
lprec
## Model name:
## C1 C2
## Maximize 275.691 48.341
## R1 1 1 <= 350000
## R2 1 0 >= 15000
## R3 0 1 >= 75000
## R4 2 -1 = 0
## Kind Std Std
## Type Real Real
## Upper Inf Inf
## Lower 0 0
# solve
solve(lprec)
## [1] 0
get.objective(lprec)
## [1] 43443517
get.variables(lprec)
## [1] 116666.7 233333.3
Name your dataset ‘mydata’ so it easy to work with.
Commands: read_csv() head()
mydata <- read.csv("data/ServersCost.csv")
head(mydata)
## servers cost
## 1 1 27654
## 2 2 24789
## 3 3 21890
## 4 4 21633
## 5 5 15843
## 6 6 12567
servers <- mydata$servers
cost <- mydata$cost
Corr <- cor(mydata)
Corr
## servers cost
## servers 1.00000000 0.03356606
## cost 0.03356606 1.00000000
There is some correlation, but it’s not significant enough to warrant anything.
Commands: p <- qplot( x = INDEPENDENT, y = DEPENDENT, data = mydata) + geom_point()
p <- qplot( x = servers, y = cost, data = mydata) +geom_point()
p
Commmand: p + geom_smooth(method = “lm”)
p + geom_smooth(method = "lm")
linear_model <- lm( cost ~ servers, data =mydata )
predict (linear_model, data = mydata)
## 1 2 3 4 5 6 7 8
## 14795.19 14843.19 14891.19 14939.19 14987.19 15035.19 15083.19 15131.20
## 9 10 11 12 13 14 15 16
## 15179.20 15227.20 15275.20 15323.20 15371.20 15419.21 15467.21 15515.21
## 17 18 19 20
## 15563.21 15611.21 15659.21 15707.21
summary( linear_model )
##
## Call:
## lm(formula = cost ~ servers, data = mydata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10646.2 -8646.2 -544.7 7066.0 12858.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14747.2 4035.5 3.654 0.00181 **
## servers 48.0 336.9 0.142 0.88828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8687 on 18 degrees of freedom
## Multiple R-squared: 0.001127, Adjusted R-squared: -0.05437
## F-statistic: 0.0203 on 1 and 18 DF, p-value: 0.8883
We use a transformation and use a nonlinear quadratic model to see how the model fits to the data.
Quadratic Model: y = x + x^2
setwd("C:\\Users\\Jaki\\Desktop\\BSAD 343\\07-notebook-lab")
# y = x + x^2
servers = mydata$servers
servers2 = mydata$servers^2
quad_model <- lm(cost ~ servers + servers2, data = mydata)
summary (quad_model)
##
## Call:
## lm(formula = cost ~ servers + servers2, data = mydata)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2897.8 -1553.4 -513.2 1152.4 4752.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35417.77 1742.64 20.32 2.30e-13 ***
## servers -5589.43 382.19 -14.62 4.62e-11 ***
## servers2 268.45 17.68 15.19 2.55e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2342 on 17 degrees of freedom
## Multiple R-squared: 0.9314, Adjusted R-squared: 0.9233
## F-statistic: 115.4 on 2 and 17 DF, p-value: 1.282e-10
The multiple R-squared value is .9314, and the Adjusted R-squared vavlue is .9233. Since these numbers are so close together, it indicates the the model is a good fit for the data, better than the first place.
Commands: predicted_2 <- predict( quad_model, data = mydata )
servers2 = servers^2
quad_model = lm(cost ~ servers + servers2 )
predicted2 = predict(quad_model,data=mydata)
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
qplot( x = servers, y = predicted2, colour = "red" )
servers <- mydata$servers
servers2 <- mydata$servers^2
servers3 <- mydata$servers^3
cubic_model <- lm(cost ~ servers + servers2 + servers3)
summary( cubic_model )
##
## Call:
## lm(formula = cost ~ servers + servers2 + servers3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2871.0 -1435.1 -473.6 1271.8 4600.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36133.696 2625.976 13.760 2.77e-10 ***
## servers -5954.738 1056.596 -5.636 3.72e-05 ***
## servers2 310.895 115.431 2.693 0.016 *
## servers3 -1.347 3.619 -0.372 0.715
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2404 on 16 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.9193
## F-statistic: 73.11 on 3 and 16 DF, p-value: 1.478e-09
Multiple R-squared is .932 and adjusted R-squared is .9193, this signifies that the model and variables have a strong relationship.
Commands: predicted3 <- predict( cubic_model, data = mydata )
predicted3 <- predict( cubic_model, data = mydata )
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
qplot( x = servers, y = predicted3, colour = "red" )
This model appears to have data points that are well suited to the model, because they follow a quandratic formula with little deviations. The points on the graph match the model almost indentically. ### 3E) Overlay the all models on top of the data. Which model seems to fit the best in your opinion? Justify your answer.
variables: LINEAR_MODEL , PREDICTED_QUADRATIC, PREDICTED_CUBIC
# Black = Actual Data
plot(servers, cost, pch = 16)
# Blue = Linear Line based on Linear Regression Model
abline(linear_model, col = "blue", lwd = 2)
# Red = Quadratic Model based on Quadratric Regression found above
# Needed to overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted2, col = "red", pch = 16)
# Green = Cubic Model based on Cubic Regression found above
# Overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted3, col = "green", pch = 16)
Model 3 is the best fit model for the data and the plot creates a smooth negative quadratic graph.