library(keras)
# Data Preparation ---------------------------------------------------
batch_size <- 128
num_classes <- 10
epochs <- 30
# The data, shuffled and split between train and test sets
c(c(x_train, y_train), c(x_test, y_test)) %<-% dataset_mnist()
## Warning in normalizePath(path.expand(path), winslash, mustWork):
## path[1]="C:\Users\Glarange\ANACON~1\envs\rstudio/python.exe": The system
## cannot find the file specified
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
# Transform RGB values into [0,1] range
x_train <- x_train / 255
x_test <- x_test / 255
cat(nrow(x_train), 'train samples\n')
## 60000 train samples
cat(nrow(x_test), 'test samples\n')
## 10000 test samples
# Convert class vectors to binary class matrices
y_train <- to_categorical(y_train, num_classes)
y_test <- to_categorical(y_test, num_classes)
# Define Model --------------------------------------------------------------
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')
summary(model)
## ___________________________________________________________________________
## Layer (type) Output Shape Param #
## ===========================================================================
## dense_1 (Dense) (None, 256) 200960
## ___________________________________________________________________________
## dropout_1 (Dropout) (None, 256) 0
## ___________________________________________________________________________
## dense_2 (Dense) (None, 128) 32896
## ___________________________________________________________________________
## dropout_2 (Dropout) (None, 128) 0
## ___________________________________________________________________________
## dense_3 (Dense) (None, 10) 1290
## ===========================================================================
## Total params: 235,146
## Trainable params: 235,146
## Non-trainable params: 0
## ___________________________________________________________________________
model %>% compile(
loss = 'categorical_crossentropy',
optimizer = optimizer_rmsprop(),
metrics = c('accuracy')
)
# Training & Evaluation ----------------------------------------------------
# Fit model to data
history <- model %>% fit(
x_train, y_train,
batch_size = batch_size,
epochs = epochs,
verbose = 1,
validation_split = 0.2
)
plot(history)

score <- model %>% evaluate(
x_test, y_test,
verbose = 0
)
# Output metrics
cat('Test loss:', score[[1]], '\n')
## Test loss: 0.1147846
cat('Test accuracy:', score[[2]], '\n')
## Test accuracy: 0.9796