11. A company buys 100 lightbulbs, each of which has an exponential lifetime of 1000 hours. What is the expected time for the first of these bulbs to burn out? (See Exercise 10.)

According to Exercise 10, the minimum value of n independent random variables (each of which has an exponential density with mean \(\mu\)) is exponential density with mean \(\mu/n\).

In case of Exercise 11, mean \(\mu=1000\) is exponential life time of a single blurb. Minimum value of n independent random variables is life time of the blurb that burns out first. Expected life time of the blurb that burns out first is \(\mu/n=1000/100=10\) hours.

14. Assume that X1 and X2 are independent random variables, each having an exponential density with parameter λ. Show that Z=X1−X2 has density.

\(f_Z(z) = (1/2)\lambda e^{-\lambda |z|}\)

The exponential probability density function is defined by the following formula:

\(f_{X1}(x) = f_{X2}(x) = \begin{cases}\lambda e^{-\lambda x} & \text{where } x \geq 0, \\0, & \text{otherwise. } \\ \end{cases}\)

Since X1 and X2 are independent random variables we can calculate joint density function :

\(f(x_1, x_2) = f(x_1)f(x_2) = \lambda e^{-\lambda x_1}\lambda e^{-\lambda x_2} = \lambda^2 e^{-\lambda(x_1 + x_2)}\)

Since \(Z=X1−X2\) let \(X1=Z+X2\). Now, let’s substitute \(X1\) with \(Z+X2\) in the equation below:

\(f(z+x_2, x_2) = \lambda^2 e^{-\lambda(z+x_2 + x_2)}=\lambda^2 e^{-\lambda(z+2 x_2)}\)

In order to calculate f_Z(z) we have to integrate f(z+x_2, x_2) from \(-\infty\) to \(\infty\).

According to exponential probability density function equation, both \(X1\) and \(X2\) are greater or equal 0. It suggests that \(Z\) fall into interval \((-\infty;0]\) when \(X2\geq X1\) and \(Z\) fall into interval \([0;\infty)\) when \(X1\geq X2\).

So that, let’s calculate \(f_Z(z)\) in the interval \((-\infty;0]\)

\(f_Z(z) = \int_{-\infty}^0\lambda^2 e^{-\lambda(z+2 x_2)}dx_2 = \lambda^2 e^{-\lambda z}\int_{-\infty}^0e^{-2\lambda x_2}dx_2= \lambda^2 e^{-\lambda z}\int_{-\infty}^0e^{-2\lambda x_2}dx_2=\lambda^2 e^{-\lambda z}(\frac{ -1}{2\lambda}) \\\)

Now, let’s calculate \(f_Z(z)\) in the interval \([0;\infty)\)

\(f_Z(z) = \int_0^{\infty}\lambda^2 e^{-\lambda(z+2 x_2)}dx_2 = \lambda^2 e^{-\lambda z}\int_0^{\infty}e^{-2\lambda x_2}dx_2= \lambda^2 e^{-\lambda z}\int_0^{\infty}e^{-2\lambda x_2}dx_2=\lambda^2 e^{-\lambda z}(\frac{1}{2\lambda}) \\\)

Let’s summarize,

\(f(z) =\begin{cases}\frac{-\lambda}{2} (e^{-\lambda z}) & z < 0 \\\frac{\lambda}{2} (e^{-\lambda z}) & z \geq 0\end{cases}\)

Therefore, we proved that \(f_Z(z) = (1/2)\lambda e^{-\lambda |z|}\)

Let X be a continuous random variable with mean \(\mu=10\) and variance \(\sigma^2=100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities.

\(P(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2}\)

  1. \(P (|X - 10| \geq 2)\)

\(\epsilon=2\)

\(P(|X - 10| \geq 2) \leq \frac{\frac{100}{3}}{2^2}\leq \frac{25}{3}\)

  1. \(P (|X - 10| \geq 5)\)

\(\epsilon=5\)

\(P(|X - 10| \geq 5) \leq \frac{\frac{100}{3}}{5^2}\leq \frac{4}{3}\)

  1. \(P (|X - 10| \geq 9)\)

\(\epsilon=9\)

\(P(|X - 10| \geq 2) \leq \frac{\frac{100}{3}}{9^2}\leq \frac{100}{243}\)

  1. \(P (|X - 10| \geq 20)\)

\(\epsilon=20\)

\(P(|X - 10| \geq 2) \leq \frac{\frac{100}{3}}{20^2}\leq \frac{1}{12}\)