kenya_dat_long<-kenya_dat %>% group_by(year) %>%
summarize(percent_fridge=mean(fridge_stat,na.rm=T),percent_phone=mean(phone,na.rm=T),percent_radio=mean(radio_stat,na.rm=T),percent_owns_car=mean(car_stat,na.rm=T),percent_tv=mean(tv_stat,na.rm=T),percent_bike=mean(bike_stat,na.rm=T),percent_motorcycle=mean(motorcycle_stat,na.rm=T),percent_newspaper=mean(literacy,na.rm=T))
kenya_dat_long<-data.frame(kenya_dat_long)
kenya_modern<-melt(kenya_dat_long,id="year")
ggplot(data=kenya_modern,aes(x=year,y=value,col=variable))+
geom_line(size=2)+
xlab("DHS Study Year")+
ylab("Percent")+
ggtitle("Modernity Related Descriptive Statistics",subtitle = "Kenya Contraception Project - Spring 2018")
## Warning: Removed 6 rows containing missing values (geom_path).

kenya_dat_long2<-kenya_dat %>% group_by(year) %>%
summarize(percent_never_married=mean(never_married,na.rm=T),percent_more1_union=mean(more_than1_union,na.rm=T),percent_husband_home=mean(husband_home,na.rm=T),percent_desires_kids=mean(kid_desire,na.rm=T),percent_female_working=mean(femwork,na.rm=T))
kenya_dat_long2<-data.frame(kenya_dat_long2)
kenya_demo<-melt(kenya_dat_long2,id="year")
ggplot(data=kenya_demo,aes(x=year,y=value,col=variable))+
geom_line(size=2)+
xlab("DHS Study Year")+
ylab("Percent")+
ggtitle("Demographic Related Descriptive Statistics",subtitle = "Kenya Contraception Project - Spring 2018")

kenya_dat_long3<-kenya_dat %>% group_by(year) %>%
summarize(mean_children_ever=mean(cheb,na.rm=T),mean_sons_home=mean(sonsathome,na.rm=T),mean_daus_home=mean(dausathome,na.rm=T),mean_sons_died=mean(sonsdied,na.rm=T),mean_daus_died=mean(dausdied,na.rm=T))
kenya_dat_long3<-data.frame(kenya_dat_long3)
kenya_children<-melt(kenya_dat_long3,id="year")
ggplot(data=kenya_children,aes(x=year,y=value,col=variable))+
geom_line(size=2)+
xlab("DHS Study Year")+
ylab("Percent")+
ggtitle("Children Related Descriptive Statistics",subtitle = "Kenya Contraception Project - Spring 2018")

kenya_dat_long4<-kenya_dat %>% group_by(year) %>%
summarize(mean_urban=mean(urban_stat,na.rm=T),mean_mig_rural_urb=mean(mig_rurl_urb,na.rm=T),mean_mig_urb_rural=mean(mig_urb_rurl,na.rm=T))
kenya_dat_long4<-data.frame(kenya_dat_long4)
kenya_urban_migration<-melt(kenya_dat_long4,id="year")
ggplot(data=kenya_urban_migration,aes(x=year,y=value,col=variable))+
geom_line(size=2)+
xlab("DHS Study Year")+
ylab("Percent")+
ggtitle("Urban / Migration Related Descriptive Statistics",subtitle = "Kenya Contraception Project - Spring 2018")

#urban only model
options(survey.lonely.psu = "adjust")
des1<-svydesign(ids=~caseid,strata=~strata,weights=~perweight,data=kenya_dat[!is.na(kenya_dat$strata),],nest=T)
fit1<-svyglm(contracept~urban_stat,design=des1,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
#urban + demographic model
options(survey.lonely.psu = "adjust")
fit2<-svyglm(contracept~urban_stat+year+more_than1_union+husband_home+kid_desire+femwork,design=des1,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
#urban + demographic + children model
options(survey.lonely.psu = "adjust")
fit3<-svyglm(contracept~urban_stat+year+more_than1_union+husband_home+kid_desire+femwork+cheb+sonsathome+dausathome+sonsdied+dausdied,design=des1,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
#urban + demographic + children + modernity model
options(survey.lonely.psu = "adjust")
fit4<-svyglm(contracept~urban_stat+year+more_than1_union+husband_home+kid_desire+femwork+cheb+sonsathome+dausathome+sonsdied+dausdied+fridge_stat+phone+tv_stat+radio_stat+newspaper+car_stat+bike_stat+motorcycle_stat+literacy,design=des1,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
#urban + demographic + children + modernity + migratory model
options(survey.lonely.psu = "adjust")
fit5<-svyglm(contracept~urban_stat+year+more_than1_union+husband_home+kid_desire+femwork+cheb+sonsathome+dausathome+sonsdied+dausdied+fridge_stat+phone+tv_stat+radio_stat+newspaper+car_stat+bike_stat+motorcycle_stat+literacy+mig_rurl_urb+mig_urb_rurl,design=des1,family=binomial)
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
stargazer(fit1,fit2,fit3,fit4,fit5,type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
contracept
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
urban_stat
|
0.397***
|
0.554***
|
0.468***
|
0.151***
|
0.136**
|
|
|
(0.025)
|
(0.040)
|
(0.042)
|
(0.057)
|
(0.059)
|
|
|
|
|
|
|
|
|
year
|
|
0.057***
|
0.055***
|
0.088***
|
0.091***
|
|
|
|
(0.002)
|
(0.002)
|
(0.005)
|
(0.005)
|
|
|
|
|
|
|
|
|
more_than1_union
|
|
-0.528***
|
-0.361***
|
-0.159*
|
-0.157*
|
|
|
|
(0.073)
|
(0.075)
|
(0.094)
|
(0.094)
|
|
|
|
|
|
|
|
|
husband_home
|
|
0.105***
|
0.104**
|
0.109**
|
0.113**
|
|
|
|
(0.040)
|
(0.041)
|
(0.053)
|
(0.053)
|
|
|
|
|
|
|
|
|
kid_desire
|
|
-0.476***
|
-0.649***
|
-0.475***
|
-0.474***
|
|
|
|
(0.035)
|
(0.040)
|
(0.052)
|
(0.052)
|
|
|
|
|
|
|
|
|
femwork
|
|
0.443***
|
0.476***
|
0.423***
|
0.422***
|
|
|
|
(0.036)
|
(0.037)
|
(0.049)
|
(0.048)
|
|
|
|
|
|
|
|
|
cheb
|
|
|
-0.170***
|
-0.169***
|
-0.169***
|
|
|
|
|
(0.017)
|
(0.023)
|
(0.023)
|
|
|
|
|
|
|
|
|
sonsathome
|
|
|
0.171***
|
0.218***
|
0.219***
|
|
|
|
|
(0.021)
|
(0.029)
|
(0.029)
|
|
|
|
|
|
|
|
|
dausathome
|
|
|
0.136***
|
0.154***
|
0.156***
|
|
|
|
|
(0.021)
|
(0.029)
|
(0.029)
|
|
|
|
|
|
|
|
|
sonsdied
|
|
|
-0.183***
|
-0.110*
|
-0.110*
|
|
|
|
|
(0.045)
|
(0.058)
|
(0.058)
|
|
|
|
|
|
|
|
|
dausdied
|
|
|
-0.154***
|
-0.032
|
-0.032
|
|
|
|
|
(0.048)
|
(0.062)
|
(0.062)
|
|
|
|
|
|
|
|
|
fridge_stat
|
|
|
|
-0.365***
|
-0.355***
|
|
|
|
|
|
(0.117)
|
(0.118)
|
|
|
|
|
|
|
|
|
phone
|
|
|
|
0.553***
|
0.551***
|
|
|
|
|
|
(0.107)
|
(0.108)
|
|
|
|
|
|
|
|
|
tv_stat
|
|
|
|
0.363***
|
0.362***
|
|
|
|
|
|
(0.057)
|
(0.057)
|
|
|
|
|
|
|
|
|
radio_stat
|
|
|
|
0.343***
|
0.341***
|
|
|
|
|
|
(0.057)
|
(0.056)
|
|
|
|
|
|
|
|
|
newspaper
|
|
|
|
0.098
|
0.094
|
|
|
|
|
|
(0.070)
|
(0.070)
|
|
|
|
|
|
|
|
|
car_stat
|
|
|
|
0.105
|
0.101
|
|
|
|
|
|
(0.111)
|
(0.111)
|
|
|
|
|
|
|
|
|
bike_stat
|
|
|
|
0.030
|
0.029
|
|
|
|
|
|
(0.048)
|
(0.048)
|
|
|
|
|
|
|
|
|
motorcycle_stat
|
|
|
|
0.005
|
0.003
|
|
|
|
|
|
(0.092)
|
(0.093)
|
|
|
|
|
|
|
|
|
literacy
|
|
|
|
0.756***
|
0.753***
|
|
|
|
|
|
(0.064)
|
(0.064)
|
|
|
|
|
|
|
|
|
mig_rurl_urb
|
|
|
|
|
0.135
|
|
|
|
|
|
|
(0.139)
|
|
|
|
|
|
|
|
|
mig_urb_rurl
|
|
|
|
|
0.119
|
|
|
|
|
|
|
(0.091)
|
|
|
|
|
|
|
|
|
Constant
|
-0.915***
|
-114.559***
|
-110.114***
|
-177.690***
|
-184.311***
|
|
|
(0.012)
|
(4.433)
|
(4.475)
|
(10.004)
|
(10.358)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
63,139
|
26,326
|
26,326
|
17,294
|
17,294
|
|
Log Likelihood
|
-37,999.030
|
-15,499.080
|
-15,241.040
|
-10,278.400
|
-10,276.560
|
|
Akaike Inf. Crit.
|
76,002.070
|
31,012.150
|
30,506.080
|
20,598.810
|
20,599.130
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|