In this lab, we will focus on linear and non-linear programming.
Linear programming, as discussed in the previous lab, works with simple and multiple linear regression techniques; sometimes the variables have completely direct or completely non-direct relationships and these techniques can model them.
Sometimes, however, the variables do not predict each other in a linear way. For example, looking at the stock market vs. time, we know that generally the market was booming before the crash, then the market crashed and the great depression hit, and slowly the market started to rise again.
This pattern is not linear, and in fact a non-linear programming technique can be used to model it and predict the value of the market based on the year.
In this lab, we will explore topics like optimization, solve a marketing model, and perform linear and non-linear regression on the cost of servers.
We are going to use tidyverse a collection of R packages designed for data science.
## Loading required package: lpSolveAPI
## Loading required package: tidyverse
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 2.2.1 ✔ purrr 0.2.4
## ✔ tibble 1.4.2 ✔ dplyr 0.7.4
## ✔ tidyr 0.8.0 ✔ stringr 1.2.0
## ✔ readr 1.1.1 ✔ forcats 0.2.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
lprec <- make.lp(0, 2)
lp.control(lprec, sense="max")
## $anti.degen
## [1] "fixedvars" "stalling"
##
## $basis.crash
## [1] "none"
##
## $bb.depthlimit
## [1] -50
##
## $bb.floorfirst
## [1] "automatic"
##
## $bb.rule
## [1] "pseudononint" "greedy" "dynamic" "rcostfixing"
##
## $break.at.first
## [1] FALSE
##
## $break.at.value
## [1] 1e+30
##
## $epsilon
## epsb epsd epsel epsint epsperturb epspivot
## 1e-10 1e-09 1e-12 1e-07 1e-05 2e-07
##
## $improve
## [1] "dualfeas" "thetagap"
##
## $infinite
## [1] 1e+30
##
## $maxpivot
## [1] 250
##
## $mip.gap
## absolute relative
## 1e-11 1e-11
##
## $negrange
## [1] -1e+06
##
## $obj.in.basis
## [1] TRUE
##
## $pivoting
## [1] "devex" "adaptive"
##
## $presolve
## [1] "none"
##
## $scalelimit
## [1] 5
##
## $scaling
## [1] "geometric" "equilibrate" "integers"
##
## $sense
## [1] "maximize"
##
## $simplextype
## [1] "dual" "primal"
##
## $timeout
## [1] 0
##
## $verbose
## [1] "neutral"
set.objfn(lprec, c(275.691, 48.341))
add.constraint(lprec, c(1, 1), "<=", 350000)
add.constraint(lprec, c(1, 0), ">=", 15000)
add.constraint(lprec, c(0, 1), ">=", 75000)
add.constraint(lprec, c(2, -1), "=", 0)
lprec
## Model name:
## C1 C2
## Maximize 275.691 48.341
## R1 1 1 <= 350000
## R2 1 0 >= 15000
## R3 0 1 >= 75000
## R4 2 -1 = 0
## Kind Std Std
## Type Real Real
## Upper Inf Inf
## Lower 0 0
# solve
solve(lprec)
## [1] 0
get.objective(lprec)
## [1] 43443517
get.variables(lprec)
## [1] 116666.7 233333.3
Name your dataset ‘mydata’ so it easy to work with.
Commands: read_csv() head() ##Might need to load tidyverse? package
mydata <- read.csv('data/ServersCost.csv')
servers <- mydata$servers
cost <- mydata$cost
cor(mydata)
## servers cost
## servers 1.00000000 0.03356606
## cost 0.03356606 1.00000000
Commands: p <- qplot( x = INDEPENDENT, y = DEPENDENT, data = mydata) + geom_point()
p <- qplot( x = servers, y = cost, data = mydata) + geom_point()
p
Commmand: p + geom_smooth(method = “lm”)
p + geom_smooth(method = "lm")
linear_model <- lm( cost ~ servers )
summary( linear_model )
##
## Call:
## lm(formula = cost ~ servers)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10646.2 -8646.2 -544.7 7066.0 12858.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14747.2 4035.5 3.654 0.00181 **
## servers 48.0 336.9 0.142 0.88828
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8687 on 18 degrees of freedom
## Multiple R-squared: 0.001127, Adjusted R-squared: -0.05437
## F-statistic: 0.0203 on 1 and 18 DF, p-value: 0.8883
We use a transformation and use a nonlinear quadratic model to see how the model fits to the data.
Quadratic Model: y = x + x^2
#y = x + x^2
servers2 <- servers^2
quad_model <- lm(cost ~ servers + servers2)
summary( quad_model )
##
## Call:
## lm(formula = cost ~ servers + servers2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2897.8 -1553.4 -513.2 1152.4 4752.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35417.77 1742.64 20.32 2.30e-13 ***
## servers -5589.43 382.19 -14.62 4.62e-11 ***
## servers2 268.45 17.68 15.19 2.55e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2342 on 17 degrees of freedom
## Multiple R-squared: 0.9314, Adjusted R-squared: 0.9233
## F-statistic: 115.4 on 2 and 17 DF, p-value: 1.282e-10
Commands: predicted_2 <- predict( quad_model, data = mydata )
servers2 = servers^2
quad_model = lm(cost ~ servers + servers2 )
predicted2 = predict(quad_model,data=mydata)
predicted2
## 1 2 3 4 5 6 7
## 30096.790 25312.706 21065.520 17355.233 14181.844 11545.354 9445.762
## 8 9 10 11 12 13 14
## 7883.068 6857.273 6368.376 6416.377 7001.277 8123.076 9781.772
## 15 16 17 18 19 20
## 11977.367 14709.861 17979.252 21785.543 26128.731 31008.818
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
qplot( x = servers, y = predicted2, colour = "red" )
##y = x + x^2 + x^3
servers3 <- mydata$servers^3
cubic_model <- lm(cost ~ servers + servers2 + servers3)
summary( cubic_model )
##
## Call:
## lm(formula = cost ~ servers + servers2 + servers3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2871.0 -1435.1 -473.6 1271.8 4600.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36133.696 2625.976 13.760 2.77e-10 ***
## servers -5954.738 1056.596 -5.636 3.72e-05 ***
## servers2 310.895 115.431 2.693 0.016 *
## servers3 -1.347 3.619 -0.372 0.715
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2404 on 16 degrees of freedom
## Multiple R-squared: 0.932, Adjusted R-squared: 0.9193
## F-statistic: 73.11 on 3 and 16 DF, p-value: 1.478e-09
Commands: predicted3 <- predict( cubic_model, data = mydata )
predicted3 <- predict( cubic_model, data = mydata )
predicted3
## 1 2 3 4 5 6 7
## 30488.507 25457.022 21031.159 17202.831 13963.954 11306.443 9222.212
## 8 9 10 11 12 13 14
## 7703.177 6741.253 6328.355 6456.398 7117.297 8302.966 10005.322
## 15 16 17 18 19 20
## 12216.278 14927.751 18131.654 21819.904 25984.414 30617.101
Commands: qplot( x = DEPENDENT, y = INDEPENDENT/PREDICTED, colour = “red” )
qplot( x = servers, y = predicted3, colour = "red" )
variables: LINEAR_MODEL , PREDICTED_QUADRATIC, PREDICTED_CUBIC
# Black = Actual Data
plot(servers, cost, pch = 16)
# Blue = Linear Line based on Linear Regression Model
abline(linear_model, col = "blue", lwd = 2)
# Red = Quadratic Model based on Quadratric Regression found above
# Needed to overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted2, col = "red", pch = 16)
# Green = Cubic Model based on Cubic Regression found above
# Overlay new points without the labels and annotations
par(new = TRUE, xaxt = "n", yaxt = "n", ann = FALSE)
plot(predicted3, col = "green", pch = 16)