TEST_PRESEN

First Slide

For more details on authoring R presentations please visit https://support.rstudio.com/hc/en-us/articles/200486468.

  • Bullet 1
  • Bullet 2
  • Bullet 3

Slide With Code

#Some libraries
rm(list=ls())
library(car)
library(caret)
library(class)
library(devtools)
library(e1071)
library(ggplot2)
library(klaR)
library(klaR)
library(MASS)
library(nnet)
library(plyr)
library(pROC)
library(psych)
library(scatterplot3d)
library(SDMTools)
library(dplyr)
library(ElemStatLearn)
library(rpart)
library(rpart.plot)
library(randomForest)
library(neuralnet)

##Set working directory
setwd("D:/GREAT LAKES/MACHINE LEARNING")
getwd()
[1] "D:/GREAT LAKES/MACHINE LEARNING"
Cars<-read.csv("Actual_Cars_data.csv", header=T)
sapply(Cars, function(y) sum(length(which(is.na(y)))))
      Age    Gender  Engineer       MBA  Work.Exp    Salary  Distance 
        0         0         0         1         0         0         0 
  license Transport 
        0         0 
Cars[is.na(Cars$MBA),4]<-0
sapply(Cars, function(y) sum(length(which(is.na(y)))))
      Age    Gender  Engineer       MBA  Work.Exp    Salary  Distance 
        0         0         0         0         0         0         0 
  license Transport 
        0         0 
View(Cars)
na.omit(Cars)
    Age Gender Engineer MBA Work.Exp Salary Distance license
1    28   Male        0   0        4   14.3      3.2       0
2    23 Female        1   0        4    8.3      3.3       0
3    29   Male        1   0        7   13.4      4.1       0
4    28 Female        1   1        5   13.4      4.5       0
5    27   Male        1   0        4   13.4      4.6       0
6    26   Male        1   0        4   12.3      4.8       1
7    28   Male        1   0        5   14.4      5.1       0
8    26 Female        1   0        3   10.5      5.1       0
9    22   Male        1   0        1    7.5      5.1       0
10   27   Male        1   0        4   13.5      5.2       0
11   25 Female        1   0        4   11.5      5.2       0
12   27   Male        1   0        4   13.5      5.3       1
13   24   Male        1   0        2    8.5      5.4       0
14   27   Male        1   0        4   13.4      5.5       1
15   32   Male        1   0        9   15.5      5.5       0
16   25   Male        1   1        4   11.5      5.6       0
17   34   Male        1   0       13   16.5      5.9       0
18   26 Female        1   0        4   12.3      5.9       0
19   23   Male        1   0        2    8.5      6.1       0
20   23   Male        0   0        2    8.6      6.1       0
21   26   Male        1   0        5   11.4      6.1       0
22   24   Male        1   0        6   10.6      6.1       0
23   27 Female        1   0        9   15.5      6.1       0
24   30   Male        0   0        8   14.6      6.1       0
25   24   Male        0   0        2    8.5      6.2       0
26   26 Female        0   0        3    9.5      6.2       0
27   28   Male        1   1        7   13.6      6.3       0
28   25   Male        0   0        1    7.6      6.3       0
29   26   Male        0   0        2    8.5      6.3       1
30   30 Female        1   0        8   14.6      6.3       0
31   26 Female        0   0        3    9.5      6.3       0
32   24   Male        1   1        2    8.6      6.4       0
33   27   Male        1   0        7   16.6      6.4       0
34   27 Female        1   0        5   12.5      6.4       0
35   30 Female        1   0        8   14.6      6.5       0
36   27   Male        1   0        6   12.6      6.5       0
37   25   Male        0   0        2    8.6      6.7       1
38   25 Female        0   0        3    9.6      6.7       0
39   26   Male        0   0        3    9.5      6.8       0
40   22   Male        1   0        3    8.4      6.8       0
41   28   Male        1   0        6   13.6      6.9       1
42   25 Female        1   0        4   11.5      7.0       0
43   20   Male        1   0        2    8.5      7.0       0
44   25   Male        1   0        3   10.5      7.1       0
45   33   Male        0   0       13   36.6      7.1       1
46   23 Female        1   1        4    8.4      7.1       0
47   21   Male        0   0        3    9.5      7.1       0
48   30   Male        1   0        8   14.6      7.1       0
49   28 Female        0   1        5   14.6      7.2       0
50   23 Female        1   1        1    7.5      7.2       0
51   23   Male        1   1        3   11.7      7.2       0
52   30 Female        1   0        8   14.4      7.2       0
53   30   Male        0   1        7   14.4      7.3       0
54   23   Male        0   0        0    6.5      7.3       0
55   31   Male        0   0        9   15.6      7.3       0
56   28 Female        1   0        9   21.7      7.3       0
57   26   Male        1   0        4   12.5      7.4       0
58   23 Female        1   0        0    7.7      7.4       0
59   25   Male        1   0        2    8.6      7.4       0
60   24   Male        1   0        4    8.5      7.5       0
61   28   Male        1   0        6   13.7      7.5       1
62   26   Male        0   0        4   12.6      7.5       0
63   23   Male        1   0        1    7.5      7.5       0
64   28 Female        1   0        5   13.6      7.5       0
65   22 Female        1   0        0    6.5      7.6       0
66   29   Male        1   0        5   15.4      7.6       1
67   31   Male        1   0        9   15.6      7.6       0
68   24   Male        0   0        2    8.7      7.6       0
69   29   Male        1   0        6   14.6      7.6       0
70   26   Male        1   1        4   12.4      7.6       0
71   21   Male        0   1        3   10.6      7.7       0
72   24   Male        1   1        1    8.5      7.7       0
73   29 Female        0   0        7   14.6      7.7       0
74   28   Male        1   0        5   13.6      7.9       0
75   27   Male        0   0        3    9.5      7.9       1
76   20 Female        0   1        1    8.5      7.9       0
77   24   Male        1   0        2    8.5      8.0       0
78   25   Male        1   0        3   10.6      8.1       0
79   21 Female        1   0        3    9.6      8.1       0
80   26   Male        1   1        8   21.6      8.1       1
81   22 Female        1   0        2   11.7      8.1       0
82   29   Male        0   0        7   14.6      8.1       0
83   19 Female        1   0        1    7.5      8.1       0
84   22 Female        1   0        2    8.5      8.1       0
85   30 Female        1   0        8   14.6      8.1       0
86   29   Male        1   0        6   14.7      8.1       0
87   27   Male        0   0        6   12.6      8.1       0
88   27 Female        1   0        4   13.8      8.1       0
89   27 Female        0   0        4   13.6      8.2       0
90   27 Female        0   1        4   13.6      8.2       0
91   31 Female        0   0        9   14.6      8.2       0
92   20   Male        0   1        2    8.8      8.3       0
93   25   Male        1   0        4   11.6      8.3       0
94   24   Male        1   1        6   10.6      8.4       1
95   32   Male        1   0       11   14.7      8.4       0
96   25   Male        1   0        3    9.8      8.4       0
97   32   Male        1   0       10   15.7      8.4       0
98   24   Male        0   0        2    8.7      8.4       0
99   31   Male        1   0       10   14.8      8.4       0
100  33   Male        1   0       11   15.6      8.5       0
101  30 Female        1   0        8   14.7      8.5       0
102  24   Male        0   1        2    8.5      8.5       1
103  24   Male        1   0        2    8.5      8.5       0
104  28   Male        1   0        4   14.6      8.6       0
105  23   Male        0   0        2    8.8      8.6       0
106  28 Female        0   0        6   13.6      8.6       0
107  30   Male        1   0        7   15.6      8.6       1
108  28   Male        0   0        6   13.8      8.6       0
109  20   Male        1   0        2    8.8      8.7       1
110  24   Male        1   0        6   12.7      8.7       0
111  27   Male        1   1        5   13.5      8.8       0
112  26   Male        1   0        5   12.8      8.8       0
113  25 Female        1   0        3   10.6      8.8       0
114  25   Male        1   0        7   17.8      8.8       0
115  26 Female        1   0        3   10.8      8.9       0
116  29   Male        1   0        9   22.8      8.9       0
117  24 Female        1   0        6   10.5      8.9       0
118  21 Female        1   0        3    9.8      8.9       0
119  28   Male        1   0        6   13.7      8.9       0
120  27   Male        0   1        8   15.6      9.0       0
121  28   Male        0   1        3    9.5      9.0       0
122  28 Female        0   0       10   19.7      9.0       0
123  26 Female        1   0        3   10.8      9.0       0
124  26   Male        1   0        4   12.7      9.0       1
125  24   Male        1   0        4   10.9      9.0       0
126  28   Male        0   1       10   20.7      9.0       0
127  39   Male        1   1       19   38.9      9.0       1
128  28 Female        1   0        5   14.6      9.0       0
129  26 Female        1   1        3   10.9      9.1       0
130  24   Male        1   1        0    7.9      9.1       0
131  25   Male        0   0        4   11.9      9.1       0
132  31 Female        1   0        6   16.9      9.1       0
133  27   Male        0   0        7   12.5      9.1       0
134  29   Male        1   1       11   25.9      9.1       0
135  23   Male        1   0        2    8.8      9.2       1
136  23   Male        1   1        0    6.6      9.2       0
137  36   Male        1   1       16   34.8      9.2       0
138  29 Female        0   0        7   14.6      9.2       0
139  31   Male        1   1       12   28.8      9.3       0
140  28   Male        1   0        5   13.6      9.3       0
141  27   Male        1   0        5   12.5      9.3       0
142  23 Female        0   0        0    6.8      9.3       0
143  27   Male        1   0        3   10.6      9.3       0
144  33   Male        1   1       11   15.6      9.3       0
145  28 Female        0   0        6   13.7      9.4       0
146  25   Male        1   0        1    8.6      9.4       0
147  25 Female        1   0        1    8.6      9.4       0
148  26   Male        0   0        3    9.9      9.4       0
149  26 Female        0   0        4   12.9      9.4       0
150  29   Male        1   0        9   23.8      9.4       0
151  26   Male        1   1        3   10.8      9.4       0
152  22 Female        1   1        2    8.5      9.5       0
153  26   Male        1   0        2    9.6      9.5       0
154  27   Male        1   1        6   12.9      9.5       0
155  24   Male        0   0        2    8.6      9.5       1
156  28   Male        1   0        6   13.9      9.5       0
157  24   Male        1   1        0    7.6      9.5       0
158  26   Male        1   0        4   12.9      9.6       0
159  26   Male        1   0        2    9.5      9.6       0
160  26   Male        1   0        3   10.6      9.6       0
161  28   Male        1   1        5   14.8      9.7       0
162  26   Male        1   0        3   10.5      9.7       1
163  25   Male        1   0        1    8.6      9.7       0
164  28   Male        1   0        6   13.6      9.7       1
165  31   Male        0   1        7   15.9      9.7       0
166  27 Female        1   0        5   12.8      9.7       0
167  28   Male        0   0        5   14.5      9.8       1
168  27 Female        1   1        4   13.8      9.8       0
169  27 Female        1   1        5   13.8      9.8       0
170  31 Female        1   0       10   14.9      9.9       0
171  25   Male        1   1        3    9.7      9.9       0
172  30   Male        1   0        4   16.8      9.9       0
173  26 Female        0   0        3    9.6      9.9       0
174  24   Male        1   0        0    7.6     10.0       0
175  26   Male        0   0        3    9.8     10.0       0
176  39   Male        1   0       21   39.9     10.0       1
177  36   Male        0   0       17   39.0     10.0       1
178  26   Male        1   1        4   12.9     10.0       0
179  30   Male        0   1        8   14.6     10.0       0
180  27   Male        0   1        5   13.9     10.0       0
181  25 Female        1   0        6   11.6     10.1       0
182  32 Female        1   1        9   16.9     10.1       0
183  24   Male        0   1        2    8.7     10.1       0
184  29   Male        1   0        6   14.8     10.1       0
185  27   Male        1   0        4   13.8     10.1       0
186  29   Male        0   0        6   14.6     10.1       0
187  35 Female        1   0       16   28.7     10.2       0
188  25   Male        1   0        2    8.7     10.2       0
189  29   Male        1   1        6   14.6     10.2       1
190  24   Male        1   0        0    7.6     10.2       0
191  28   Male        1   0        3   10.8     10.2       1
192  34   Male        1   1       14   36.9     10.4       1
193  36   Male        1   1       18   28.7     10.4       1
194  27   Male        1   1        4   13.6     10.4       0
195  29   Male        0   0        6   14.7     10.4       0
196  30   Male        1   1        8   14.9     10.4       0
197  26 Female        1   0        6   17.8     10.4       0
198  24   Male        1   1        1    7.9     10.5       0
199  28   Male        1   0        5   14.7     10.5       1
200  28 Female        1   0        6   13.9     10.5       0
201  30 Female        1   0        7   14.6     10.5       0
202  29   Male        0   0        5   15.9     10.5       0
203  30   Male        1   1        8   14.6     10.6       0
204  27 Female        1   0        5   12.9     10.6       0
205  27   Male        0   1        8   20.7     10.7       0
206  28   Male        0   0        6   13.9     10.7       0
207  26 Female        1   0        2    9.8     10.7       0
208  23 Female        0   0        4   11.6     10.7       0
209  30   Male        1   0        6   15.8     10.7       0
210  24   Male        1   1        0    7.8     10.7       0
211  25   Male        1   1        7   13.6     10.7       0
212  25   Male        1   0        3   10.7     10.8       0
213  28   Male        1   1        5   14.8     10.8       1
214  26 Female        1   1        4   12.8     10.8       0
215  30   Male        0   0        8   14.6     10.9       1
216  33   Male        1   1       14   34.9     10.9       0
217  32   Male        1   0       12   15.7     10.9       0
218  29 Female        0   1        7   14.6     10.9       0
219  33   Male        1   0       11   16.7     10.9       1
220  24   Male        1   1        3    9.9     10.9       0
221  21 Female        0   0        3    9.8     11.0       0
222  26 Female        1   0        4   12.6     11.0       0
223  25 Female        1   0        2    8.6     11.0       0
224  26   Male        1   0        2    8.6     11.0       1
225  24   Male        1   0        0    8.0     11.0       1
226  31 Female        0   1        9   14.6     11.1       0
227  26   Male        0   0        5   12.6     11.1       0
228  26 Female        1   0        4   12.9     11.1       0
229  39   Male        1   0       19   47.0     11.2       1
230  29   Male        1   0        5   14.9     11.2       0
231  25 Female        1   1        1    8.6     11.2       0
232  27   Male        1   1        6   12.8     11.3       0
233  28 Female        1   0        5   13.7     11.3       0
234  29   Male        1   0       11   22.7     11.3       1
235  24   Male        1   1        6   11.6     11.3       1
236  24   Male        1   1        0    7.7     11.3       1
237  30   Male        1   0       10   13.8     11.4       0
238  29   Male        1   0        9   13.7     11.4       0
239  30 Female        1   0        8   14.7     11.4       1
240  23   Male        1   0        4   10.6     11.4       0
241  28 Female        0   0        9   23.8     11.4       0
242  27   Male        1   0        6   12.7     11.5       0
243  26   Male        0   0        4   12.6     11.5       1
244  26   Male        1   1        7   20.9     11.6       0
245  26   Male        1   0        4   12.8     11.6       0
246  33   Male        1   0        9   17.0     11.6       1
247  30 Female        0   0        6   15.6     11.6       0
248  26 Female        1   0        8   14.6     11.6       0
249  32   Male        1   0        9   16.9     11.7       1
250  23   Male        1   0        0    6.9     11.7       0
251  26   Male        1   1        6   11.7     11.7       0
252  29 Female        1   0        7   14.8     11.7       0
253  24   Male        1   0        4   12.7     11.7       0
254  27 Female        1   0        3   10.7     11.7       0
255  23   Male        1   0        0    7.7     11.7       0
256  29 Female        0   0        7   13.6     11.7       0
257  27 Female        1   0        5   12.8     11.8       0
258  32 Female        1   0       10   15.6     11.8       0
259  21   Male        1   1        3    9.9     11.8       0
260  26 Female        1   0        6   11.8     11.9       0
261  30   Male        1   0        6   15.7     11.9       1
262  30   Male        1   1       10   28.8     11.9       1
263  38   Male        1   0       18   36.9     11.9       1
264  30 Female        1   0        6   15.6     11.9       0
265  40   Male        1   0       21   54.0     11.9       1
266  28   Male        1   1        6   13.7     11.9       0
267  30   Male        1   0        8   14.8     12.0       0
268  22   Male        1   1        2   12.7     12.0       0
269  28   Male        1   1        7   13.9     12.1       0
270  30   Male        0   0       10   29.9     12.1       0
271  25   Male        1   1        4   11.7     12.1       1
272  25 Female        1   0        5   17.8     12.1       0
273  31   Male        1   0       10   14.9     12.1       0
274  24   Male        1   1        0    7.7     12.1       0
275  34   Male        1   1       16   34.9     12.2       0
276  28   Male        1   0        5   13.9     12.2       1
277  33 Female        1   0       13   36.0     12.2       1
278  25 Female        1   0        5   18.9     12.2       0
279  32   Male        0   0        9   16.9     12.2       1
280  24 Female        0   0        0    6.8     12.2       0
281  26 Female        1   0        2    9.8     12.2       0
282  26   Male        0   0        3    9.8     12.2       1
283  26   Male        1   0        3   10.7     12.2       1
284  18   Male        1   0        0    6.8     12.2       0
285  26   Male        1   1        5   12.7     12.2       0
286  27   Male        1   0        8   20.7     12.2       0
287  33   Male        0   0       11   17.0     12.3       1
288  29   Male        0   0        7   14.7     12.3       0
289  33   Male        1   0       10   16.9     12.3       0
290  24   Male        1   0        1    7.7     12.4       1
291  31   Male        1   0        7   17.0     12.4       1
292  27   Male        1   0        4   13.8     12.4       0
293  26   Male        1   1        5   12.7     12.5       0
294  28   Male        0   0        5   14.9     12.5       1
295  24 Female        1   1        1    8.8     12.6       1
296  27   Male        1   1        5   13.7     12.6       0
297  30   Male        1   1        8   14.7     12.6       0
298  24 Female        1   1        2    8.7     12.6       0
299  27   Male        1   0        8   20.7     12.6       0
300  38   Male        0   0       19   44.0     12.6       1
301  25   Male        0   0        5   13.7     12.7       1
302  24   Male        1   0        1    8.9     12.7       0
303  21   Male        0   0        3    9.8     12.7       0
304  22   Male        1   0        0    6.8     12.7       0
305  25   Male        0   1        4   11.8     12.8       0
306  34   Male        1   1       11   17.0     12.8       0
307  27   Male        1   0        6   12.8     12.8       0
308  24   Male        1   1        1    8.8     12.8       0
309  26   Male        1   0        4   12.7     12.8       0
310  25   Male        1   0        3   10.8     12.8       0
311  28   Male        1   0        6   13.8     12.9       0
312  30 Female        1   0        6   15.8     12.9       0
313  34   Male        1   1       15   37.0     12.9       1
314  30   Male        1   1        9   14.9     12.9       0
315  26   Male        1   0        5   11.7     13.0       0
316  30   Male        1   0        9   14.8     13.0       0
317  27 Female        1   0        8   24.9     13.0       0
318  31   Male        1   0       12   43.0     13.0       1
319  22   Male        1   1        0    6.9     13.0       0
320  28   Male        1   0        4   14.8     13.0       0
321  18   Male        0   0        0    6.7     13.0       0
322  23 Female        1   1        2    8.8     13.1       0
323  24   Male        1   0        1    7.8     13.1       0
324  25 Female        0   0        2    8.9     13.2       0
325  26 Female        0   0        5   12.8     13.2       0
326  22   Male        1   0        0    6.9     13.2       0
327  24   Male        1   0        4   13.8     13.2       0
328  26   Male        0   0        4   12.7     13.3       0
329  27 Female        1   1        4   13.7     13.3       0
330  27   Male        1   0        6   12.9     13.3       0
331  24   Male        0   1        2    8.9     13.4       0
332  27   Male        1   1        8   21.8     13.4       0
333  26 Female        1   0        8   20.9     13.4       0
334  22   Male        1   0        0    7.0     13.5       0
335  35 Female        1   0       15   37.0     13.5       1
336  26 Female        1   0        4   12.8     13.6       1
337  38   Male        1   0       19   54.0     13.6       1
338  36 Female        1   0       18   44.0     13.6       1
339  27   Male        1   0        1    8.9     13.6       0
340  28   Male        1   0        7   12.7     13.6       0
341  28   Male        1   0        3   10.9     13.6       0
342  28   Male        1   0        4   14.9     13.7       0
343  31   Male        1   0        7   15.9     13.7       0
344  23   Male        0   0        0    6.9     13.7       0
345  24   Male        1   1        2    8.9     13.8       0
346  24 Female        1   0        2    8.9     13.8       0
347  34 Female        1   0       14   34.0     13.8       0
348  26   Male        0   0        7   18.8     13.8       0
349  26   Male        0   1        5   12.8     13.9       0
350  30   Male        1   0        7   14.9     14.0       0
351  32   Male        1   0       11   15.8     14.1       1
352  27   Male        0   0        9   23.9     14.1       0
353  38   Male        1   0       19   48.0     14.1       1
354  38   Male        1   1       20   42.0     14.1       1
355  40   Male        1   0       22   51.0     14.1       1
356  27   Male        1   0        4   13.9     14.2       0
357  26   Male        1   0        4   12.8     14.2       0
358  24 Female        0   0        2    9.0     14.2       0
359  30   Male        1   0        8   14.8     14.3       0
360  28   Male        1   0        4   14.9     14.3       0
361  30   Male        1   0        6   15.8     14.3       0
362  27 Female        1   0        7   23.8     14.4       0
363  36   Male        1   0       16   45.0     14.4       1
364  31   Male        1   0       12   34.0     14.4       1
365  22 Female        1   0        0    6.8     14.5       0
366  25 Female        0   0        3    9.9     14.6       0
367  32 Female        0   0       10   15.9     14.6       0
368  32 Female        1   1       10   15.8     14.6       1
369  26   Male        1   0        5   12.8     15.0       0
370  34 Female        0   0       14   28.8     15.0       0
371  27   Male        1   0        9   20.8     15.1       0
372  24 Female        1   0        2    9.0     15.1       0
373  34   Male        1   0       14   45.0     15.1       1
374  28 Female        1   0        6   13.9     15.1       0
375  27   Male        0   0        5   13.8     15.2       0
376  22   Male        0   0        0    6.8     15.2       1
377  25 Female        1   0        2    8.8     15.2       0
378  23   Male        1   0        1    7.9     15.2       0
379  24   Male        0   0        0    6.9     15.3       0
380  21   Male        1   1        3    9.8     15.3       0
381  29   Male        0   0        5   14.8     15.4       0
382  30   Male        1   0        8   15.0     15.5       1
383  40 Female        1   0       20   42.9     15.5       0
384  28   Male        1   0        5   13.8     15.5       0
385  30   Male        1   0        8   14.9     15.5       1
386  28 Female        0   1        9   23.8     15.5       0
387  27   Male        1   1        6   12.9     15.6       0
388  26   Male        1   0        6   18.8     15.6       0
389  26 Female        1   0        3   10.8     15.6       0
390  27   Male        0   0        3    9.8     15.7       1
391  26 Female        0   0        7   18.8     15.7       0
392  22   Male        1   1        0    6.9     15.7       0
393  24 Female        1   0        1    8.8     15.8       0
394  23   Male        1   1        2    8.9     15.8       0
395  25   Male        1   0        2    8.9     15.8       0
396  37   Male        1   1       18   41.0     15.9       1
397  25   Male        0   0        3    9.9     15.9       0
398  23   Male        1   0        0    8.0     15.9       0
399  20 Female        1   0        2    9.0     16.2       0
400  22   Male        0   0        1    7.9     16.3       1
401  39   Male        1   0       21   40.9     16.3       0
402  26 Female        1   0        6   23.0     16.3       0
403  26   Male        1   0        2   10.0     16.4       1
404  28   Male        1   0        5   13.9     16.4       0
405  31   Male        1   0        8   15.9     16.4       0
406  32 Female        1   0       14   30.9     16.5       0
407  34   Male        1   0       12   16.9     16.6       0
408  32 Female        1   1        9   15.9     16.6       0
409  24   Male        1   0        2    8.9     16.8       0
410  25 Female        1   0        1    8.9     16.8       0
411  40   Male        1   1       20   41.9     16.9       1
412  38 Female        1   0       20   43.0     17.0       1
413  29 Female        1   0        6   14.9     17.0       0
414  29   Male        1   1        8   13.9     17.1       0
415  24   Male        1   0        0    7.9     17.1       0
416  25   Male        1   0        3    9.9     17.2       0
417  27 Female        0   0        4   13.9     17.3       0
418  33   Male        1   0       14   33.0     17.3       0
419  26   Male        1   1        2    9.9     17.7       0
420  34   Male        1   1       16   36.0     17.8       1
421  31   Male        0   0       11   33.0     17.8       1
422  23 Female        1   1        2    9.0     17.9       0
423  23   Male        0   0        3    9.9     17.9       0
424  36 Female        1   0       17   38.0     18.0       1
425  39   Male        1   0       21   46.0     18.1       1
426  38   Male        1   0       18   45.0     18.1       1
427  40   Male        1   0       20   48.0     18.2       1
428  30   Male        1   1       11   35.0     18.3       1
429  39   Male        0   0       21   51.0     18.6       1
430  38   Male        1   0       19   51.0     18.8       1
431  42   Male        1   0       22   55.0     19.0       1
432  29   Male        0   1        7   15.0     19.0       1
433  33   Male        1   1       10   17.0     19.1       0
434  26   Male        1   0        4   13.0     19.1       1
435  40   Male        1   0       22   45.0     19.8       1
436  37   Male        0   0       19   42.0     20.7       1
437  43   Male        1   1       24   52.0     20.8       1
438  28 Female        1   1        7   13.0     21.0       1
439  34   Male        1   0       14   38.0     21.3       1
440  40   Male        1   0       20   57.0     21.4       1
441  38   Male        1   0       19   44.0     21.5       1
442  37   Male        1   0       19   45.0     21.5       1
443  37   Male        0   0       19   47.0     22.8       1
444  39   Male        1   1       21   50.0     23.4       1
           Transport
1   Public Transport
2   Public Transport
3   Public Transport
4   Public Transport
5   Public Transport
6   Public Transport
7           2Wheeler
8   Public Transport
9   Public Transport
10  Public Transport
11  Public Transport
12  Public Transport
13  Public Transport
14  Public Transport
15  Public Transport
16  Public Transport
17  Public Transport
18  Public Transport
19  Public Transport
20  Public Transport
21  Public Transport
22          2Wheeler
23          2Wheeler
24  Public Transport
25  Public Transport
26  Public Transport
27  Public Transport
28          2Wheeler
29  Public Transport
30  Public Transport
31  Public Transport
32  Public Transport
33  Public Transport
34  Public Transport
35  Public Transport
36  Public Transport
37  Public Transport
38          2Wheeler
39  Public Transport
40  Public Transport
41  Public Transport
42  Public Transport
43  Public Transport
44  Public Transport
45  Public Transport
46  Public Transport
47          2Wheeler
48  Public Transport
49  Public Transport
50  Public Transport
51          2Wheeler
52  Public Transport
53  Public Transport
54          2Wheeler
55  Public Transport
56  Public Transport
57  Public Transport
58  Public Transport
59  Public Transport
60          2Wheeler
61          2Wheeler
62          2Wheeler
63  Public Transport
64  Public Transport
65  Public Transport
66  Public Transport
67  Public Transport
68  Public Transport
69  Public Transport
70  Public Transport
71          2Wheeler
72  Public Transport
73  Public Transport
74  Public Transport
75  Public Transport
76  Public Transport
77  Public Transport
78  Public Transport
79  Public Transport
80  Public Transport
81  Public Transport
82  Public Transport
83  Public Transport
84          2Wheeler
85  Public Transport
86  Public Transport
87  Public Transport
88  Public Transport
89  Public Transport
90  Public Transport
91  Public Transport
92  Public Transport
93  Public Transport
94  Public Transport
95  Public Transport
96  Public Transport
97  Public Transport
98  Public Transport
99  Public Transport
100 Public Transport
101 Public Transport
102 Public Transport
103 Public Transport
104 Public Transport
105 Public Transport
106 Public Transport
107 Public Transport
108 Public Transport
109 Public Transport
110         2Wheeler
111 Public Transport
112 Public Transport
113 Public Transport
114 Public Transport
115 Public Transport
116 Public Transport
117 Public Transport
118 Public Transport
119 Public Transport
120         2Wheeler
121 Public Transport
122         2Wheeler
123 Public Transport
124 Public Transport
125 Public Transport
126 Public Transport
127              Car
128 Public Transport
129 Public Transport
130 Public Transport
131 Public Transport
132              Car
133 Public Transport
134 Public Transport
135         2Wheeler
136 Public Transport
137 Public Transport
138         2Wheeler
139 Public Transport
140 Public Transport
141 Public Transport
142 Public Transport
143 Public Transport
144 Public Transport
145 Public Transport
146 Public Transport
147 Public Transport
148 Public Transport
149 Public Transport
150         2Wheeler
151 Public Transport
152         2Wheeler
153 Public Transport
154 Public Transport
155 Public Transport
156 Public Transport
157 Public Transport
158 Public Transport
159 Public Transport
160 Public Transport
161 Public Transport
162 Public Transport
163 Public Transport
164 Public Transport
165 Public Transport
166         2Wheeler
167 Public Transport
168 Public Transport
169 Public Transport
170 Public Transport
171 Public Transport
172              Car
173 Public Transport
174 Public Transport
175 Public Transport
176              Car
177              Car
178 Public Transport
179 Public Transport
180 Public Transport
181         2Wheeler
182              Car
183 Public Transport
184 Public Transport
185 Public Transport
186 Public Transport
187 Public Transport
188 Public Transport
189 Public Transport
190 Public Transport
191 Public Transport
192         2Wheeler
193 Public Transport
194 Public Transport
195 Public Transport
196 Public Transport
197 Public Transport
198 Public Transport
199         2Wheeler
200 Public Transport
201 Public Transport
202 Public Transport
203 Public Transport
204 Public Transport
205 Public Transport
206 Public Transport
207         2Wheeler
208         2Wheeler
209 Public Transport
210 Public Transport
211         2Wheeler
212 Public Transport
213         2Wheeler
214 Public Transport
215 Public Transport
216 Public Transport
217 Public Transport
218 Public Transport
219              Car
220 Public Transport
221         2Wheeler
222         2Wheeler
223         2Wheeler
224 Public Transport
225         2Wheeler
226 Public Transport
227 Public Transport
228         2Wheeler
229              Car
230 Public Transport
231         2Wheeler
232 Public Transport
233 Public Transport
234         2Wheeler
235 Public Transport
236 Public Transport
237 Public Transport
238 Public Transport
239         2Wheeler
240         2Wheeler
241 Public Transport
242 Public Transport
243 Public Transport
244 Public Transport
245 Public Transport
246              Car
247 Public Transport
248 Public Transport
249              Car
250         2Wheeler
251 Public Transport
252 Public Transport
253         2Wheeler
254 Public Transport
255         2Wheeler
256 Public Transport
257         2Wheeler
258              Car
259 Public Transport
260 Public Transport
261 Public Transport
262         2Wheeler
263              Car
264 Public Transport
265              Car
266 Public Transport
267 Public Transport
268 Public Transport
269 Public Transport
270 Public Transport
271 Public Transport
272 Public Transport
273 Public Transport
274 Public Transport
275 Public Transport
276         2Wheeler
277              Car
278         2Wheeler
279              Car
280 Public Transport
281         2Wheeler
282 Public Transport
283 Public Transport
284 Public Transport
285 Public Transport
286         2Wheeler
287              Car
288 Public Transport
289              Car
290 Public Transport
291              Car
292 Public Transport
293 Public Transport
294         2Wheeler
295         2Wheeler
296 Public Transport
297 Public Transport
298         2Wheeler
299 Public Transport
300              Car
301         2Wheeler
302 Public Transport
303 Public Transport
304 Public Transport
305 Public Transport
306              Car
307 Public Transport
308 Public Transport
309 Public Transport
310 Public Transport
311 Public Transport
312 Public Transport
313         2Wheeler
314 Public Transport
315 Public Transport
316 Public Transport
317 Public Transport
318              Car
319         2Wheeler
320 Public Transport
321         2Wheeler
322         2Wheeler
323 Public Transport
324         2Wheeler
325         2Wheeler
326         2Wheeler
327 Public Transport
328 Public Transport
329 Public Transport
330 Public Transport
331 Public Transport
332 Public Transport
333         2Wheeler
334         2Wheeler
335              Car
336         2Wheeler
337              Car
338              Car
339 Public Transport
340 Public Transport
341 Public Transport
342 Public Transport
343 Public Transport
344         2Wheeler
345 Public Transport
346         2Wheeler
347              Car
348 Public Transport
349 Public Transport
350 Public Transport
351              Car
352 Public Transport
353              Car
354              Car
355              Car
356 Public Transport
357 Public Transport
358         2Wheeler
359 Public Transport
360 Public Transport
361 Public Transport
362         2Wheeler
363              Car
364              Car
365 Public Transport
366 Public Transport
367              Car
368              Car
369 Public Transport
370 Public Transport
371 Public Transport
372         2Wheeler
373              Car
374 Public Transport
375 Public Transport
376         2Wheeler
377         2Wheeler
378 Public Transport
379         2Wheeler
380 Public Transport
381 Public Transport
382         2Wheeler
383              Car
384 Public Transport
385         2Wheeler
386 Public Transport
387 Public Transport
388 Public Transport
389 Public Transport
390 Public Transport
391         2Wheeler
392 Public Transport
393         2Wheeler
394 Public Transport
395 Public Transport
396              Car
397 Public Transport
398         2Wheeler
399         2Wheeler
400         2Wheeler
401              Car
402         2Wheeler
403         2Wheeler
404 Public Transport
405 Public Transport
406              Car
407 Public Transport
408 Public Transport
409 Public Transport
410         2Wheeler
411              Car
412              Car
413 Public Transport
414 Public Transport
415         2Wheeler
416 Public Transport
417 Public Transport
418              Car
419 Public Transport
420              Car
421              Car
422         2Wheeler
423 Public Transport
424              Car
425              Car
426              Car
427              Car
428              Car
429              Car
430              Car
431              Car
432         2Wheeler
433              Car
434         2Wheeler
435              Car
436              Car
437              Car
438         2Wheeler
439              Car
440              Car
441              Car
442              Car
443              Car
444              Car
summary(Cars)
      Age           Gender       Engineer           MBA        
 Min.   :18.00   Female:128   Min.   :0.0000   Min.   :0.0000  
 1st Qu.:25.00   Male  :316   1st Qu.:1.0000   1st Qu.:0.0000  
 Median :27.00                Median :1.0000   Median :0.0000  
 Mean   :27.75                Mean   :0.7545   Mean   :0.2523  
 3rd Qu.:30.00                3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :43.00                Max.   :1.0000   Max.   :1.0000  
    Work.Exp        Salary         Distance        license      
 Min.   : 0.0   Min.   : 6.50   Min.   : 3.20   Min.   :0.0000  
 1st Qu.: 3.0   1st Qu.: 9.80   1st Qu.: 8.80   1st Qu.:0.0000  
 Median : 5.0   Median :13.60   Median :11.00   Median :0.0000  
 Mean   : 6.3   Mean   :16.24   Mean   :11.32   Mean   :0.2342  
 3rd Qu.: 8.0   3rd Qu.:15.72   3rd Qu.:13.43   3rd Qu.:0.0000  
 Max.   :24.0   Max.   :57.00   Max.   :23.40   Max.   :1.0000  
            Transport  
 2Wheeler        : 83  
 Car             : 61  
 Public Transport:300  



str(Cars)
'data.frame':   444 obs. of  9 variables:
 $ Age      : int  28 23 29 28 27 26 28 26 22 27 ...
 $ Gender   : Factor w/ 2 levels "Female","Male": 2 1 2 1 2 2 2 1 2 2 ...
 $ Engineer : int  0 1 1 1 1 1 1 1 1 1 ...
 $ MBA      : num  0 0 0 1 0 0 0 0 0 0 ...
 $ Work.Exp : int  4 4 7 5 4 4 5 3 1 4 ...
 $ Salary   : num  14.3 8.3 13.4 13.4 13.4 12.3 14.4 10.5 7.5 13.5 ...
 $ Distance : num  3.2 3.3 4.1 4.5 4.6 4.8 5.1 5.1 5.1 5.2 ...
 $ license  : int  0 0 0 0 0 1 0 0 0 0 ...
 $ Transport: Factor w/ 3 levels "2Wheeler","Car",..: 3 3 3 3 3 3 1 3 3 3 ...
## Determine Levels
levels(Cars$Gender)
[1] "Female" "Male"  
levels(Cars$Transport)
[1] "2Wheeler"         "Car"              "Public Transport"
#Define some dummies
Cars$Female<-ifelse(Cars$Gender=="Female",1,0)
Cars$Male<-ifelse(Cars$Gender=="Male",1,0)
View(Cars)

#Partitioning Data Sets
#Partition train and val
#We will use this throughout so that samples are comparable
set.seed(7)
pd<-sample(2,nrow(Cars),replace=TRUE, prob=c(0.7,0.3))
train<-Cars[pd==1,]
val<-Cars[pd==2,]

#K FOLD VALIDATIONS
names(Cars)
 [1] "Age"       "Gender"    "Engineer"  "MBA"       "Work.Exp" 
 [6] "Salary"    "Distance"  "license"   "Transport" "Female"   
[11] "Male"     
Carstrim<-Cars[,-2]
na.omit(Carstrim)
    Age Engineer MBA Work.Exp Salary Distance license        Transport
1    28        0   0        4   14.3      3.2       0 Public Transport
2    23        1   0        4    8.3      3.3       0 Public Transport
3    29        1   0        7   13.4      4.1       0 Public Transport
4    28        1   1        5   13.4      4.5       0 Public Transport
5    27        1   0        4   13.4      4.6       0 Public Transport
6    26        1   0        4   12.3      4.8       1 Public Transport
7    28        1   0        5   14.4      5.1       0         2Wheeler
8    26        1   0        3   10.5      5.1       0 Public Transport
9    22        1   0        1    7.5      5.1       0 Public Transport
10   27        1   0        4   13.5      5.2       0 Public Transport
11   25        1   0        4   11.5      5.2       0 Public Transport
12   27        1   0        4   13.5      5.3       1 Public Transport
13   24        1   0        2    8.5      5.4       0 Public Transport
14   27        1   0        4   13.4      5.5       1 Public Transport
15   32        1   0        9   15.5      5.5       0 Public Transport
16   25        1   1        4   11.5      5.6       0 Public Transport
17   34        1   0       13   16.5      5.9       0 Public Transport
18   26        1   0        4   12.3      5.9       0 Public Transport
19   23        1   0        2    8.5      6.1       0 Public Transport
20   23        0   0        2    8.6      6.1       0 Public Transport
21   26        1   0        5   11.4      6.1       0 Public Transport
22   24        1   0        6   10.6      6.1       0         2Wheeler
23   27        1   0        9   15.5      6.1       0         2Wheeler
24   30        0   0        8   14.6      6.1       0 Public Transport
25   24        0   0        2    8.5      6.2       0 Public Transport
26   26        0   0        3    9.5      6.2       0 Public Transport
27   28        1   1        7   13.6      6.3       0 Public Transport
28   25        0   0        1    7.6      6.3       0         2Wheeler
29   26        0   0        2    8.5      6.3       1 Public Transport
30   30        1   0        8   14.6      6.3       0 Public Transport
31   26        0   0        3    9.5      6.3       0 Public Transport
32   24        1   1        2    8.6      6.4       0 Public Transport
33   27        1   0        7   16.6      6.4       0 Public Transport
34   27        1   0        5   12.5      6.4       0 Public Transport
35   30        1   0        8   14.6      6.5       0 Public Transport
36   27        1   0        6   12.6      6.5       0 Public Transport
37   25        0   0        2    8.6      6.7       1 Public Transport
38   25        0   0        3    9.6      6.7       0         2Wheeler
39   26        0   0        3    9.5      6.8       0 Public Transport
40   22        1   0        3    8.4      6.8       0 Public Transport
41   28        1   0        6   13.6      6.9       1 Public Transport
42   25        1   0        4   11.5      7.0       0 Public Transport
43   20        1   0        2    8.5      7.0       0 Public Transport
44   25        1   0        3   10.5      7.1       0 Public Transport
45   33        0   0       13   36.6      7.1       1 Public Transport
46   23        1   1        4    8.4      7.1       0 Public Transport
47   21        0   0        3    9.5      7.1       0         2Wheeler
48   30        1   0        8   14.6      7.1       0 Public Transport
49   28        0   1        5   14.6      7.2       0 Public Transport
50   23        1   1        1    7.5      7.2       0 Public Transport
51   23        1   1        3   11.7      7.2       0         2Wheeler
52   30        1   0        8   14.4      7.2       0 Public Transport
53   30        0   1        7   14.4      7.3       0 Public Transport
54   23        0   0        0    6.5      7.3       0         2Wheeler
55   31        0   0        9   15.6      7.3       0 Public Transport
56   28        1   0        9   21.7      7.3       0 Public Transport
57   26        1   0        4   12.5      7.4       0 Public Transport
58   23        1   0        0    7.7      7.4       0 Public Transport
59   25        1   0        2    8.6      7.4       0 Public Transport
60   24        1   0        4    8.5      7.5       0         2Wheeler
61   28        1   0        6   13.7      7.5       1         2Wheeler
62   26        0   0        4   12.6      7.5       0         2Wheeler
63   23        1   0        1    7.5      7.5       0 Public Transport
64   28        1   0        5   13.6      7.5       0 Public Transport
65   22        1   0        0    6.5      7.6       0 Public Transport
66   29        1   0        5   15.4      7.6       1 Public Transport
67   31        1   0        9   15.6      7.6       0 Public Transport
68   24        0   0        2    8.7      7.6       0 Public Transport
69   29        1   0        6   14.6      7.6       0 Public Transport
70   26        1   1        4   12.4      7.6       0 Public Transport
71   21        0   1        3   10.6      7.7       0         2Wheeler
72   24        1   1        1    8.5      7.7       0 Public Transport
73   29        0   0        7   14.6      7.7       0 Public Transport
74   28        1   0        5   13.6      7.9       0 Public Transport
75   27        0   0        3    9.5      7.9       1 Public Transport
76   20        0   1        1    8.5      7.9       0 Public Transport
77   24        1   0        2    8.5      8.0       0 Public Transport
78   25        1   0        3   10.6      8.1       0 Public Transport
79   21        1   0        3    9.6      8.1       0 Public Transport
80   26        1   1        8   21.6      8.1       1 Public Transport
81   22        1   0        2   11.7      8.1       0 Public Transport
82   29        0   0        7   14.6      8.1       0 Public Transport
83   19        1   0        1    7.5      8.1       0 Public Transport
84   22        1   0        2    8.5      8.1       0         2Wheeler
85   30        1   0        8   14.6      8.1       0 Public Transport
86   29        1   0        6   14.7      8.1       0 Public Transport
87   27        0   0        6   12.6      8.1       0 Public Transport
88   27        1   0        4   13.8      8.1       0 Public Transport
89   27        0   0        4   13.6      8.2       0 Public Transport
90   27        0   1        4   13.6      8.2       0 Public Transport
91   31        0   0        9   14.6      8.2       0 Public Transport
92   20        0   1        2    8.8      8.3       0 Public Transport
93   25        1   0        4   11.6      8.3       0 Public Transport
94   24        1   1        6   10.6      8.4       1 Public Transport
95   32        1   0       11   14.7      8.4       0 Public Transport
96   25        1   0        3    9.8      8.4       0 Public Transport
97   32        1   0       10   15.7      8.4       0 Public Transport
98   24        0   0        2    8.7      8.4       0 Public Transport
99   31        1   0       10   14.8      8.4       0 Public Transport
100  33        1   0       11   15.6      8.5       0 Public Transport
101  30        1   0        8   14.7      8.5       0 Public Transport
102  24        0   1        2    8.5      8.5       1 Public Transport
103  24        1   0        2    8.5      8.5       0 Public Transport
104  28        1   0        4   14.6      8.6       0 Public Transport
105  23        0   0        2    8.8      8.6       0 Public Transport
106  28        0   0        6   13.6      8.6       0 Public Transport
107  30        1   0        7   15.6      8.6       1 Public Transport
108  28        0   0        6   13.8      8.6       0 Public Transport
109  20        1   0        2    8.8      8.7       1 Public Transport
110  24        1   0        6   12.7      8.7       0         2Wheeler
111  27        1   1        5   13.5      8.8       0 Public Transport
112  26        1   0        5   12.8      8.8       0 Public Transport
113  25        1   0        3   10.6      8.8       0 Public Transport
114  25        1   0        7   17.8      8.8       0 Public Transport
115  26        1   0        3   10.8      8.9       0 Public Transport
116  29        1   0        9   22.8      8.9       0 Public Transport
117  24        1   0        6   10.5      8.9       0 Public Transport
118  21        1   0        3    9.8      8.9       0 Public Transport
119  28        1   0        6   13.7      8.9       0 Public Transport
120  27        0   1        8   15.6      9.0       0         2Wheeler
121  28        0   1        3    9.5      9.0       0 Public Transport
122  28        0   0       10   19.7      9.0       0         2Wheeler
123  26        1   0        3   10.8      9.0       0 Public Transport
124  26        1   0        4   12.7      9.0       1 Public Transport
125  24        1   0        4   10.9      9.0       0 Public Transport
126  28        0   1       10   20.7      9.0       0 Public Transport
127  39        1   1       19   38.9      9.0       1              Car
128  28        1   0        5   14.6      9.0       0 Public Transport
129  26        1   1        3   10.9      9.1       0 Public Transport
130  24        1   1        0    7.9      9.1       0 Public Transport
131  25        0   0        4   11.9      9.1       0 Public Transport
132  31        1   0        6   16.9      9.1       0              Car
133  27        0   0        7   12.5      9.1       0 Public Transport
134  29        1   1       11   25.9      9.1       0 Public Transport
135  23        1   0        2    8.8      9.2       1         2Wheeler
136  23        1   1        0    6.6      9.2       0 Public Transport
137  36        1   1       16   34.8      9.2       0 Public Transport
138  29        0   0        7   14.6      9.2       0         2Wheeler
139  31        1   1       12   28.8      9.3       0 Public Transport
140  28        1   0        5   13.6      9.3       0 Public Transport
141  27        1   0        5   12.5      9.3       0 Public Transport
142  23        0   0        0    6.8      9.3       0 Public Transport
143  27        1   0        3   10.6      9.3       0 Public Transport
144  33        1   1       11   15.6      9.3       0 Public Transport
145  28        0   0        6   13.7      9.4       0 Public Transport
146  25        1   0        1    8.6      9.4       0 Public Transport
147  25        1   0        1    8.6      9.4       0 Public Transport
148  26        0   0        3    9.9      9.4       0 Public Transport
149  26        0   0        4   12.9      9.4       0 Public Transport
150  29        1   0        9   23.8      9.4       0         2Wheeler
151  26        1   1        3   10.8      9.4       0 Public Transport
152  22        1   1        2    8.5      9.5       0         2Wheeler
153  26        1   0        2    9.6      9.5       0 Public Transport
154  27        1   1        6   12.9      9.5       0 Public Transport
155  24        0   0        2    8.6      9.5       1 Public Transport
156  28        1   0        6   13.9      9.5       0 Public Transport
157  24        1   1        0    7.6      9.5       0 Public Transport
158  26        1   0        4   12.9      9.6       0 Public Transport
159  26        1   0        2    9.5      9.6       0 Public Transport
160  26        1   0        3   10.6      9.6       0 Public Transport
161  28        1   1        5   14.8      9.7       0 Public Transport
162  26        1   0        3   10.5      9.7       1 Public Transport
163  25        1   0        1    8.6      9.7       0 Public Transport
164  28        1   0        6   13.6      9.7       1 Public Transport
165  31        0   1        7   15.9      9.7       0 Public Transport
166  27        1   0        5   12.8      9.7       0         2Wheeler
167  28        0   0        5   14.5      9.8       1 Public Transport
168  27        1   1        4   13.8      9.8       0 Public Transport
169  27        1   1        5   13.8      9.8       0 Public Transport
170  31        1   0       10   14.9      9.9       0 Public Transport
171  25        1   1        3    9.7      9.9       0 Public Transport
172  30        1   0        4   16.8      9.9       0              Car
173  26        0   0        3    9.6      9.9       0 Public Transport
174  24        1   0        0    7.6     10.0       0 Public Transport
175  26        0   0        3    9.8     10.0       0 Public Transport
176  39        1   0       21   39.9     10.0       1              Car
177  36        0   0       17   39.0     10.0       1              Car
178  26        1   1        4   12.9     10.0       0 Public Transport
179  30        0   1        8   14.6     10.0       0 Public Transport
180  27        0   1        5   13.9     10.0       0 Public Transport
181  25        1   0        6   11.6     10.1       0         2Wheeler
182  32        1   1        9   16.9     10.1       0              Car
183  24        0   1        2    8.7     10.1       0 Public Transport
184  29        1   0        6   14.8     10.1       0 Public Transport
185  27        1   0        4   13.8     10.1       0 Public Transport
186  29        0   0        6   14.6     10.1       0 Public Transport
187  35        1   0       16   28.7     10.2       0 Public Transport
188  25        1   0        2    8.7     10.2       0 Public Transport
189  29        1   1        6   14.6     10.2       1 Public Transport
190  24        1   0        0    7.6     10.2       0 Public Transport
191  28        1   0        3   10.8     10.2       1 Public Transport
192  34        1   1       14   36.9     10.4       1         2Wheeler
193  36        1   1       18   28.7     10.4       1 Public Transport
194  27        1   1        4   13.6     10.4       0 Public Transport
195  29        0   0        6   14.7     10.4       0 Public Transport
196  30        1   1        8   14.9     10.4       0 Public Transport
197  26        1   0        6   17.8     10.4       0 Public Transport
198  24        1   1        1    7.9     10.5       0 Public Transport
199  28        1   0        5   14.7     10.5       1         2Wheeler
200  28        1   0        6   13.9     10.5       0 Public Transport
201  30        1   0        7   14.6     10.5       0 Public Transport
202  29        0   0        5   15.9     10.5       0 Public Transport
203  30        1   1        8   14.6     10.6       0 Public Transport
204  27        1   0        5   12.9     10.6       0 Public Transport
205  27        0   1        8   20.7     10.7       0 Public Transport
206  28        0   0        6   13.9     10.7       0 Public Transport
207  26        1   0        2    9.8     10.7       0         2Wheeler
208  23        0   0        4   11.6     10.7       0         2Wheeler
209  30        1   0        6   15.8     10.7       0 Public Transport
210  24        1   1        0    7.8     10.7       0 Public Transport
211  25        1   1        7   13.6     10.7       0         2Wheeler
212  25        1   0        3   10.7     10.8       0 Public Transport
213  28        1   1        5   14.8     10.8       1         2Wheeler
214  26        1   1        4   12.8     10.8       0 Public Transport
215  30        0   0        8   14.6     10.9       1 Public Transport
216  33        1   1       14   34.9     10.9       0 Public Transport
217  32        1   0       12   15.7     10.9       0 Public Transport
218  29        0   1        7   14.6     10.9       0 Public Transport
219  33        1   0       11   16.7     10.9       1              Car
220  24        1   1        3    9.9     10.9       0 Public Transport
221  21        0   0        3    9.8     11.0       0         2Wheeler
222  26        1   0        4   12.6     11.0       0         2Wheeler
223  25        1   0        2    8.6     11.0       0         2Wheeler
224  26        1   0        2    8.6     11.0       1 Public Transport
225  24        1   0        0    8.0     11.0       1         2Wheeler
226  31        0   1        9   14.6     11.1       0 Public Transport
227  26        0   0        5   12.6     11.1       0 Public Transport
228  26        1   0        4   12.9     11.1       0         2Wheeler
229  39        1   0       19   47.0     11.2       1              Car
230  29        1   0        5   14.9     11.2       0 Public Transport
231  25        1   1        1    8.6     11.2       0         2Wheeler
232  27        1   1        6   12.8     11.3       0 Public Transport
233  28        1   0        5   13.7     11.3       0 Public Transport
234  29        1   0       11   22.7     11.3       1         2Wheeler
235  24        1   1        6   11.6     11.3       1 Public Transport
236  24        1   1        0    7.7     11.3       1 Public Transport
237  30        1   0       10   13.8     11.4       0 Public Transport
238  29        1   0        9   13.7     11.4       0 Public Transport
239  30        1   0        8   14.7     11.4       1         2Wheeler
240  23        1   0        4   10.6     11.4       0         2Wheeler
241  28        0   0        9   23.8     11.4       0 Public Transport
242  27        1   0        6   12.7     11.5       0 Public Transport
243  26        0   0        4   12.6     11.5       1 Public Transport
244  26        1   1        7   20.9     11.6       0 Public Transport
245  26        1   0        4   12.8     11.6       0 Public Transport
246  33        1   0        9   17.0     11.6       1              Car
247  30        0   0        6   15.6     11.6       0 Public Transport
248  26        1   0        8   14.6     11.6       0 Public Transport
249  32        1   0        9   16.9     11.7       1              Car
250  23        1   0        0    6.9     11.7       0         2Wheeler
251  26        1   1        6   11.7     11.7       0 Public Transport
252  29        1   0        7   14.8     11.7       0 Public Transport
253  24        1   0        4   12.7     11.7       0         2Wheeler
254  27        1   0        3   10.7     11.7       0 Public Transport
255  23        1   0        0    7.7     11.7       0         2Wheeler
256  29        0   0        7   13.6     11.7       0 Public Transport
257  27        1   0        5   12.8     11.8       0         2Wheeler
258  32        1   0       10   15.6     11.8       0              Car
259  21        1   1        3    9.9     11.8       0 Public Transport
260  26        1   0        6   11.8     11.9       0 Public Transport
261  30        1   0        6   15.7     11.9       1 Public Transport
262  30        1   1       10   28.8     11.9       1         2Wheeler
263  38        1   0       18   36.9     11.9       1              Car
264  30        1   0        6   15.6     11.9       0 Public Transport
265  40        1   0       21   54.0     11.9       1              Car
266  28        1   1        6   13.7     11.9       0 Public Transport
267  30        1   0        8   14.8     12.0       0 Public Transport
268  22        1   1        2   12.7     12.0       0 Public Transport
269  28        1   1        7   13.9     12.1       0 Public Transport
270  30        0   0       10   29.9     12.1       0 Public Transport
271  25        1   1        4   11.7     12.1       1 Public Transport
272  25        1   0        5   17.8     12.1       0 Public Transport
273  31        1   0       10   14.9     12.1       0 Public Transport
274  24        1   1        0    7.7     12.1       0 Public Transport
275  34        1   1       16   34.9     12.2       0 Public Transport
276  28        1   0        5   13.9     12.2       1         2Wheeler
277  33        1   0       13   36.0     12.2       1              Car
278  25        1   0        5   18.9     12.2       0         2Wheeler
279  32        0   0        9   16.9     12.2       1              Car
280  24        0   0        0    6.8     12.2       0 Public Transport
281  26        1   0        2    9.8     12.2       0         2Wheeler
282  26        0   0        3    9.8     12.2       1 Public Transport
283  26        1   0        3   10.7     12.2       1 Public Transport
284  18        1   0        0    6.8     12.2       0 Public Transport
285  26        1   1        5   12.7     12.2       0 Public Transport
286  27        1   0        8   20.7     12.2       0         2Wheeler
287  33        0   0       11   17.0     12.3       1              Car
288  29        0   0        7   14.7     12.3       0 Public Transport
289  33        1   0       10   16.9     12.3       0              Car
290  24        1   0        1    7.7     12.4       1 Public Transport
291  31        1   0        7   17.0     12.4       1              Car
292  27        1   0        4   13.8     12.4       0 Public Transport
293  26        1   1        5   12.7     12.5       0 Public Transport
294  28        0   0        5   14.9     12.5       1         2Wheeler
295  24        1   1        1    8.8     12.6       1         2Wheeler
296  27        1   1        5   13.7     12.6       0 Public Transport
297  30        1   1        8   14.7     12.6       0 Public Transport
298  24        1   1        2    8.7     12.6       0         2Wheeler
299  27        1   0        8   20.7     12.6       0 Public Transport
300  38        0   0       19   44.0     12.6       1              Car
301  25        0   0        5   13.7     12.7       1         2Wheeler
302  24        1   0        1    8.9     12.7       0 Public Transport
303  21        0   0        3    9.8     12.7       0 Public Transport
304  22        1   0        0    6.8     12.7       0 Public Transport
305  25        0   1        4   11.8     12.8       0 Public Transport
306  34        1   1       11   17.0     12.8       0              Car
307  27        1   0        6   12.8     12.8       0 Public Transport
308  24        1   1        1    8.8     12.8       0 Public Transport
309  26        1   0        4   12.7     12.8       0 Public Transport
310  25        1   0        3   10.8     12.8       0 Public Transport
311  28        1   0        6   13.8     12.9       0 Public Transport
312  30        1   0        6   15.8     12.9       0 Public Transport
313  34        1   1       15   37.0     12.9       1         2Wheeler
314  30        1   1        9   14.9     12.9       0 Public Transport
315  26        1   0        5   11.7     13.0       0 Public Transport
316  30        1   0        9   14.8     13.0       0 Public Transport
317  27        1   0        8   24.9     13.0       0 Public Transport
318  31        1   0       12   43.0     13.0       1              Car
319  22        1   1        0    6.9     13.0       0         2Wheeler
320  28        1   0        4   14.8     13.0       0 Public Transport
321  18        0   0        0    6.7     13.0       0         2Wheeler
322  23        1   1        2    8.8     13.1       0         2Wheeler
323  24        1   0        1    7.8     13.1       0 Public Transport
324  25        0   0        2    8.9     13.2       0         2Wheeler
325  26        0   0        5   12.8     13.2       0         2Wheeler
326  22        1   0        0    6.9     13.2       0         2Wheeler
327  24        1   0        4   13.8     13.2       0 Public Transport
328  26        0   0        4   12.7     13.3       0 Public Transport
329  27        1   1        4   13.7     13.3       0 Public Transport
330  27        1   0        6   12.9     13.3       0 Public Transport
331  24        0   1        2    8.9     13.4       0 Public Transport
332  27        1   1        8   21.8     13.4       0 Public Transport
333  26        1   0        8   20.9     13.4       0         2Wheeler
334  22        1   0        0    7.0     13.5       0         2Wheeler
335  35        1   0       15   37.0     13.5       1              Car
336  26        1   0        4   12.8     13.6       1         2Wheeler
337  38        1   0       19   54.0     13.6       1              Car
338  36        1   0       18   44.0     13.6       1              Car
339  27        1   0        1    8.9     13.6       0 Public Transport
340  28        1   0        7   12.7     13.6       0 Public Transport
341  28        1   0        3   10.9     13.6       0 Public Transport
342  28        1   0        4   14.9     13.7       0 Public Transport
343  31        1   0        7   15.9     13.7       0 Public Transport
344  23        0   0        0    6.9     13.7       0         2Wheeler
345  24        1   1        2    8.9     13.8       0 Public Transport
346  24        1   0        2    8.9     13.8       0         2Wheeler
347  34        1   0       14   34.0     13.8       0              Car
348  26        0   0        7   18.8     13.8       0 Public Transport
349  26        0   1        5   12.8     13.9       0 Public Transport
350  30        1   0        7   14.9     14.0       0 Public Transport
351  32        1   0       11   15.8     14.1       1              Car
352  27        0   0        9   23.9     14.1       0 Public Transport
353  38        1   0       19   48.0     14.1       1              Car
354  38        1   1       20   42.0     14.1       1              Car
355  40        1   0       22   51.0     14.1       1              Car
356  27        1   0        4   13.9     14.2       0 Public Transport
357  26        1   0        4   12.8     14.2       0 Public Transport
358  24        0   0        2    9.0     14.2       0         2Wheeler
359  30        1   0        8   14.8     14.3       0 Public Transport
360  28        1   0        4   14.9     14.3       0 Public Transport
361  30        1   0        6   15.8     14.3       0 Public Transport
362  27        1   0        7   23.8     14.4       0         2Wheeler
363  36        1   0       16   45.0     14.4       1              Car
364  31        1   0       12   34.0     14.4       1              Car
365  22        1   0        0    6.8     14.5       0 Public Transport
366  25        0   0        3    9.9     14.6       0 Public Transport
367  32        0   0       10   15.9     14.6       0              Car
368  32        1   1       10   15.8     14.6       1              Car
369  26        1   0        5   12.8     15.0       0 Public Transport
370  34        0   0       14   28.8     15.0       0 Public Transport
371  27        1   0        9   20.8     15.1       0 Public Transport
372  24        1   0        2    9.0     15.1       0         2Wheeler
373  34        1   0       14   45.0     15.1       1              Car
374  28        1   0        6   13.9     15.1       0 Public Transport
375  27        0   0        5   13.8     15.2       0 Public Transport
376  22        0   0        0    6.8     15.2       1         2Wheeler
377  25        1   0        2    8.8     15.2       0         2Wheeler
378  23        1   0        1    7.9     15.2       0 Public Transport
379  24        0   0        0    6.9     15.3       0         2Wheeler
380  21        1   1        3    9.8     15.3       0 Public Transport
381  29        0   0        5   14.8     15.4       0 Public Transport
382  30        1   0        8   15.0     15.5       1         2Wheeler
383  40        1   0       20   42.9     15.5       0              Car
384  28        1   0        5   13.8     15.5       0 Public Transport
385  30        1   0        8   14.9     15.5       1         2Wheeler
386  28        0   1        9   23.8     15.5       0 Public Transport
387  27        1   1        6   12.9     15.6       0 Public Transport
388  26        1   0        6   18.8     15.6       0 Public Transport
389  26        1   0        3   10.8     15.6       0 Public Transport
390  27        0   0        3    9.8     15.7       1 Public Transport
391  26        0   0        7   18.8     15.7       0         2Wheeler
392  22        1   1        0    6.9     15.7       0 Public Transport
393  24        1   0        1    8.8     15.8       0         2Wheeler
394  23        1   1        2    8.9     15.8       0 Public Transport
395  25        1   0        2    8.9     15.8       0 Public Transport
396  37        1   1       18   41.0     15.9       1              Car
397  25        0   0        3    9.9     15.9       0 Public Transport
398  23        1   0        0    8.0     15.9       0         2Wheeler
399  20        1   0        2    9.0     16.2       0         2Wheeler
400  22        0   0        1    7.9     16.3       1         2Wheeler
401  39        1   0       21   40.9     16.3       0              Car
402  26        1   0        6   23.0     16.3       0         2Wheeler
403  26        1   0        2   10.0     16.4       1         2Wheeler
404  28        1   0        5   13.9     16.4       0 Public Transport
405  31        1   0        8   15.9     16.4       0 Public Transport
406  32        1   0       14   30.9     16.5       0              Car
407  34        1   0       12   16.9     16.6       0 Public Transport
408  32        1   1        9   15.9     16.6       0 Public Transport
409  24        1   0        2    8.9     16.8       0 Public Transport
410  25        1   0        1    8.9     16.8       0         2Wheeler
411  40        1   1       20   41.9     16.9       1              Car
412  38        1   0       20   43.0     17.0       1              Car
413  29        1   0        6   14.9     17.0       0 Public Transport
414  29        1   1        8   13.9     17.1       0 Public Transport
415  24        1   0        0    7.9     17.1       0         2Wheeler
416  25        1   0        3    9.9     17.2       0 Public Transport
417  27        0   0        4   13.9     17.3       0 Public Transport
418  33        1   0       14   33.0     17.3       0              Car
419  26        1   1        2    9.9     17.7       0 Public Transport
420  34        1   1       16   36.0     17.8       1              Car
421  31        0   0       11   33.0     17.8       1              Car
422  23        1   1        2    9.0     17.9       0         2Wheeler
423  23        0   0        3    9.9     17.9       0 Public Transport
424  36        1   0       17   38.0     18.0       1              Car
425  39        1   0       21   46.0     18.1       1              Car
426  38        1   0       18   45.0     18.1       1              Car
427  40        1   0       20   48.0     18.2       1              Car
428  30        1   1       11   35.0     18.3       1              Car
429  39        0   0       21   51.0     18.6       1              Car
430  38        1   0       19   51.0     18.8       1              Car
431  42        1   0       22   55.0     19.0       1              Car
432  29        0   1        7   15.0     19.0       1         2Wheeler
433  33        1   1       10   17.0     19.1       0              Car
434  26        1   0        4   13.0     19.1       1         2Wheeler
435  40        1   0       22   45.0     19.8       1              Car
436  37        0   0       19   42.0     20.7       1              Car
437  43        1   1       24   52.0     20.8       1              Car
438  28        1   1        7   13.0     21.0       1         2Wheeler
439  34        1   0       14   38.0     21.3       1              Car
440  40        1   0       20   57.0     21.4       1              Car
441  38        1   0       19   44.0     21.5       1              Car
442  37        1   0       19   45.0     21.5       1              Car
443  37        0   0       19   47.0     22.8       1              Car
444  39        1   1       21   50.0     23.4       1              Car
    Female Male
1        0    1
2        1    0
3        0    1
4        1    0
5        0    1
6        0    1
7        0    1
8        1    0
9        0    1
10       0    1
11       1    0
12       0    1
13       0    1
14       0    1
15       0    1
16       0    1
17       0    1
18       1    0
19       0    1
20       0    1
21       0    1
22       0    1
23       1    0
24       0    1
25       0    1
26       1    0
27       0    1
28       0    1
29       0    1
30       1    0
31       1    0
32       0    1
33       0    1
34       1    0
35       1    0
36       0    1
37       0    1
38       1    0
39       0    1
40       0    1
41       0    1
42       1    0
43       0    1
44       0    1
45       0    1
46       1    0
47       0    1
48       0    1
49       1    0
50       1    0
51       0    1
52       1    0
53       0    1
54       0    1
55       0    1
56       1    0
57       0    1
58       1    0
59       0    1
60       0    1
61       0    1
62       0    1
63       0    1
64       1    0
65       1    0
66       0    1
67       0    1
68       0    1
69       0    1
70       0    1
71       0    1
72       0    1
73       1    0
74       0    1
75       0    1
76       1    0
77       0    1
78       0    1
79       1    0
80       0    1
81       1    0
82       0    1
83       1    0
84       1    0
85       1    0
86       0    1
87       0    1
88       1    0
89       1    0
90       1    0
91       1    0
92       0    1
93       0    1
94       0    1
95       0    1
96       0    1
97       0    1
98       0    1
99       0    1
100      0    1
101      1    0
102      0    1
103      0    1
104      0    1
105      0    1
106      1    0
107      0    1
108      0    1
109      0    1
110      0    1
111      0    1
112      0    1
113      1    0
114      0    1
115      1    0
116      0    1
117      1    0
118      1    0
119      0    1
120      0    1
121      0    1
122      1    0
123      1    0
124      0    1
125      0    1
126      0    1
127      0    1
128      1    0
129      1    0
130      0    1
131      0    1
132      1    0
133      0    1
134      0    1
135      0    1
136      0    1
137      0    1
138      1    0
139      0    1
140      0    1
141      0    1
142      1    0
143      0    1
144      0    1
145      1    0
146      0    1
147      1    0
148      0    1
149      1    0
150      0    1
151      0    1
152      1    0
153      0    1
154      0    1
155      0    1
156      0    1
157      0    1
158      0    1
159      0    1
160      0    1
161      0    1
162      0    1
163      0    1
164      0    1
165      0    1
166      1    0
167      0    1
168      1    0
169      1    0
170      1    0
171      0    1
172      0    1
173      1    0
174      0    1
175      0    1
176      0    1
177      0    1
178      0    1
179      0    1
180      0    1
181      1    0
182      1    0
183      0    1
184      0    1
185      0    1
186      0    1
187      1    0
188      0    1
189      0    1
190      0    1
191      0    1
192      0    1
193      0    1
194      0    1
195      0    1
196      0    1
197      1    0
198      0    1
199      0    1
200      1    0
201      1    0
202      0    1
203      0    1
204      1    0
205      0    1
206      0    1
207      1    0
208      1    0
209      0    1
210      0    1
211      0    1
212      0    1
213      0    1
214      1    0
215      0    1
216      0    1
217      0    1
218      1    0
219      0    1
220      0    1
221      1    0
222      1    0
223      1    0
224      0    1
225      0    1
226      1    0
227      0    1
228      1    0
229      0    1
230      0    1
231      1    0
232      0    1
233      1    0
234      0    1
235      0    1
236      0    1
237      0    1
238      0    1
239      1    0
240      0    1
241      1    0
242      0    1
243      0    1
244      0    1
245      0    1
246      0    1
247      1    0
248      1    0
249      0    1
250      0    1
251      0    1
252      1    0
253      0    1
254      1    0
255      0    1
256      1    0
257      1    0
258      1    0
259      0    1
260      1    0
261      0    1
262      0    1
263      0    1
264      1    0
265      0    1
266      0    1
267      0    1
268      0    1
269      0    1
270      0    1
271      0    1
272      1    0
273      0    1
274      0    1
275      0    1
276      0    1
277      1    0
278      1    0
279      0    1
280      1    0
281      1    0
282      0    1
283      0    1
284      0    1
285      0    1
286      0    1
287      0    1
288      0    1
289      0    1
290      0    1
291      0    1
292      0    1
293      0    1
294      0    1
295      1    0
296      0    1
297      0    1
298      1    0
299      0    1
300      0    1
301      0    1
302      0    1
303      0    1
304      0    1
305      0    1
306      0    1
307      0    1
308      0    1
309      0    1
310      0    1
311      0    1
312      1    0
313      0    1
314      0    1
315      0    1
316      0    1
317      1    0
318      0    1
319      0    1
320      0    1
321      0    1
322      1    0
323      0    1
324      1    0
325      1    0
326      0    1
327      0    1
328      0    1
329      1    0
330      0    1
331      0    1
332      0    1
333      1    0
334      0    1
335      1    0
336      1    0
337      0    1
338      1    0
339      0    1
340      0    1
341      0    1
342      0    1
343      0    1
344      0    1
345      0    1
346      1    0
347      1    0
348      0    1
349      0    1
350      0    1
351      0    1
352      0    1
353      0    1
354      0    1
355      0    1
356      0    1
357      0    1
358      1    0
359      0    1
360      0    1
361      0    1
362      1    0
363      0    1
364      0    1
365      1    0
366      1    0
367      1    0
368      1    0
369      0    1
370      1    0
371      0    1
372      1    0
373      0    1
374      1    0
375      0    1
376      0    1
377      1    0
378      0    1
379      0    1
380      0    1
381      0    1
382      0    1
383      1    0
384      0    1
385      0    1
386      1    0
387      0    1
388      0    1
389      1    0
390      0    1
391      1    0
392      0    1
393      1    0
394      0    1
395      0    1
396      0    1
397      0    1
398      0    1
399      1    0
400      0    1
401      0    1
402      1    0
403      0    1
404      0    1
405      0    1
406      1    0
407      0    1
408      1    0
409      0    1
410      1    0
411      0    1
412      1    0
413      1    0
414      0    1
415      0    1
416      0    1
417      1    0
418      0    1
419      0    1
420      0    1
421      0    1
422      1    0
423      0    1
424      1    0
425      0    1
426      0    1
427      0    1
428      0    1
429      0    1
430      0    1
431      0    1
432      0    1
433      0    1
434      0    1
435      0    1
436      0    1
437      0    1
438      1    0
439      0    1
440      0    1
441      0    1
442      0    1
443      0    1
444      0    1
set.seed(7)
pd<-sample(2,nrow(Carstrim),replace=TRUE, prob=c(0.7,0.3))
traintrim<-Carstrim[pd==1,]
valtrim<-Carstrim[pd==2,]
set.seed(7)
folds<-createFolds(Cars$Transport,k=10)
str(folds)
List of 10
 $ Fold01: int [1:46] 29 33 45 56 69 90 104 109 119 120 ...
 $ Fold02: int [1:44] 30 78 92 94 99 100 103 121 130 135 ...
 $ Fold03: int [1:44] 14 15 47 52 59 71 75 87 88 95 ...
 $ Fold04: int [1:45] 9 16 36 42 49 50 54 57 64 72 ...
 $ Fold05: int [1:44] 8 11 13 23 24 26 35 37 41 68 ...
 $ Fold06: int [1:44] 1 5 7 18 32 34 44 51 63 65 ...
 $ Fold07: int [1:44] 38 58 84 85 86 113 127 136 141 161 ...
 $ Fold08: int [1:44] 3 12 20 21 27 28 31 48 60 61 ...
 $ Fold09: int [1:44] 4 10 19 25 40 46 53 67 77 80 ...
 $ Fold10: int [1:45] 2 6 17 22 39 43 55 70 73 97 ...
######

Eq.2 <- Transport ~ .
#10 Fold validation with LPM
cv_LPM<-lapply(folds,function(x){
  train<-traintrim[x,]
  test<-valtrim[-x,]
  LPM.1<-lm(Eq.2, train)
  LPM1.pred<-predict(LPM.1, test)
  tab.LPM<-table(test$Transport, LPM1.pred>0.5)
  sum(diag(tab.LPM))/sum(tab.LPM)
})

str(cv_LPM)
List of 10
 $ Fold01: num 0.145
 $ Fold02: num 0.133
 $ Fold03: num 0.145
 $ Fold04: num 0.116
 $ Fold05: num 0.145
 $ Fold06: num 0.142
 $ Fold07: num 0.147
 $ Fold08: num 0.12
 $ Fold09: num 0.159
 $ Fold10: num 0.148
fit.LPM<-mean(unlist(cv_LPM))
fit.LPM
[1] 0.1401046
##########
## Accuracy of LPM is 14.01%
#########

#10 Vold Validation with NB

cv_NB<-lapply(folds,function(x){
  train.NB.kval<-traintrim[x,]
  test.NB.kval<-valtrim[-x,]
  NB.kval<-naiveBayes(x=train.NB.kval[-1], y=train.NB.kval$Transport)
  y_pred.NB.kval<-predict( NB.kval,newdata=test.NB.kval[-1])
  cm.NB.kval=table(test.NB.kval[,1],y_pred.NB.kval)
  sum(diag(cm.NB.kval))/sum(cm.NB.kval)
})

str(cv_NB)
List of 10
 $ Fold01: num 0.0229
 $ Fold02: num 0.00741
 $ Fold03: num 0.0305
 $ Fold04: num 0.0155
 $ Fold05: num 0.0382
 $ Fold06: num 0.0157
 $ Fold07: num 0.0368
 $ Fold08: num 0.032
 $ Fold09: num 0.0152
 $ Fold10: num 0.0156
fit.NB<-mean(unlist(cv_NB))
fit.NB
[1] 0.02298036
#####################
##Accuracy of NB is 2.2%
#####################

#10 Fold with LDA
library(MASS)
library(ISLR)

cv_LDA<-lapply(folds,function(x){
  train<-traintrim[x,]
  test<-valtrim[-x,]
  lda_1<-lda(Eq.2   , train)
  lda1.pred<-predict(lda_1, newdata=test)
  ldapredclass<-lda1.pred$class
  tab.LDA<-table(ldapredclass,test$Transport)
  sum(diag(tab.LDA))/sum(tab.LDA)
})

str(cv_LDA)
List of 10
 $ Fold01: num 0.626
 $ Fold02: num 0.733
 $ Fold03: num 0.779
 $ Fold04: num 0.775
 $ Fold05: num 0.763
 $ Fold06: num 0.78
 $ Fold07: num 0.721
 $ Fold08: num 0.768
 $ Fold09: num 0.742
 $ Fold10: num 0.695
fit.LDA<-mean(unlist(cv_LDA))
fit.LDA
[1] 0.7382319
#########
##Accuracy of LDA is 73.82%
#########

#10 Fold on Decision Trees

cv_DT<-lapply(folds,function(x){
  train<-traintrim[x,]
  test<-valtrim[-x,]
  DT<-rpart(Eq.2, method="class",train)
  pred = predict(DT, type="class",newdata=test)
  tabDT<-table( pred,test$Transport)
  sum(diag(tabDT))/sum(tabDT)
})

str(cv_DT)
List of 10
 $ Fold01: num 0.718
 $ Fold02: num 0.778
 $ Fold03: num 0.702
 $ Fold04: num 0.543
 $ Fold05: num 0.756
 $ Fold06: num 0.606
 $ Fold07: num 0.647
 $ Fold08: num 0.584
 $ Fold09: num 0.523
 $ Fold10: num 0.734
fit.DT<-mean(unlist(cv_DT))
fit.DT
[1] 0.6590446
########
##Accuracy of Decision trees is 65.90%
########

#####SMOTE
library(DMwR)

train_SMOTE<-traintrim[,-2]
qplot(Distance,Salary,color=Transport, data=traintrim)

plot of chunk unnamed-chunk-1

table(train_SMOTE$Transport)

        2Wheeler              Car Public Transport 
              63               39              197 
#SMOTE

#Two factors to see the plot
train_SMOTE$target <- as.factor(traintrim$Transport)
table(train_SMOTE$target)

        2Wheeler              Car Public Transport 
              63               39              197 
trainSplit <- SMOTE(target ~ ., train_SMOTE, perc.over = 200, perc.under=300)

print(prop.table(table(trainSplit$target)))

        2Wheeler              Car Public Transport 
       0.1509972        0.3333333        0.5156695 
table(trainSplit$target)

        2Wheeler              Car Public Transport 
              53              117              181 
qplot(Distance,Salary,color=Transport, data=trainSplit)

plot of chunk unnamed-chunk-1

train_SMOTE_new<-trainSplit

train_SMOTE_new <- SMOTE(Transport ~ ., train_SMOTE_new, perc.over = 100, perc.under=100)
train_SMOTE_new$target <- as.factor(train_SMOTE_new$Transport)
trainSplit <- SMOTE(target ~ ., train_SMOTE_new, perc.over = 100, perc.under=100)
trainSplit$target <- as.numeric(trainSplit$target)
trainSplit$target<-ifelse(trainSplit$target==1,1,0)




print(prop.table(table(trainSplit$target)))

        0         1 
0.7708333 0.2291667 
write.csv(train_SMOTE, "SMOTE.csv", row.names = FALSE)


#####################
Cars1<-read.csv("SMOTE.csv", header=T)
dim(Cars1)
[1] 299  10
names(Cars1)
 [1] "Age"       "MBA"       "Work.Exp"  "Salary"    "Distance" 
 [6] "license"   "Transport" "Female"    "Male"      "target"   
Cars1<-Cars1[,-7]
View(Cars1)
na.omit(Cars1)
    Age MBA Work.Exp Salary Distance license Female Male           target
1    23   0        4    8.3      3.3       0      1    0 Public Transport
2    29   0        7   13.4      4.1       0      0    1 Public Transport
3    28   1        5   13.4      4.5       0      1    0 Public Transport
4    27   0        4   13.4      4.6       0      0    1 Public Transport
5    28   0        5   14.4      5.1       0      0    1         2Wheeler
6    22   0        1    7.5      5.1       0      0    1 Public Transport
7    27   0        4   13.5      5.2       0      0    1 Public Transport
8    25   0        4   11.5      5.2       0      1    0 Public Transport
9    27   0        4   13.5      5.3       1      0    1 Public Transport
10   27   0        4   13.4      5.5       1      0    1 Public Transport
11   32   0        9   15.5      5.5       0      0    1 Public Transport
12   25   1        4   11.5      5.6       0      0    1 Public Transport
13   34   0       13   16.5      5.9       0      0    1 Public Transport
14   26   0        4   12.3      5.9       0      1    0 Public Transport
15   23   0        2    8.6      6.1       0      0    1 Public Transport
16   26   0        5   11.4      6.1       0      0    1 Public Transport
17   24   0        6   10.6      6.1       0      0    1         2Wheeler
18   26   0        3    9.5      6.2       0      1    0 Public Transport
19   28   1        7   13.6      6.3       0      0    1 Public Transport
20   25   0        1    7.6      6.3       0      0    1         2Wheeler
21   30   0        8   14.6      6.3       0      1    0 Public Transport
22   26   0        3    9.5      6.3       0      1    0 Public Transport
23   24   1        2    8.6      6.4       0      0    1 Public Transport
24   27   0        7   16.6      6.4       0      0    1 Public Transport
25   27   0        5   12.5      6.4       0      1    0 Public Transport
26   30   0        8   14.6      6.5       0      1    0 Public Transport
27   25   0        2    8.6      6.7       1      0    1 Public Transport
28   22   0        3    8.4      6.8       0      0    1 Public Transport
29   25   0        4   11.5      7.0       0      1    0 Public Transport
30   25   0        3   10.5      7.1       0      0    1 Public Transport
31   23   1        4    8.4      7.1       0      1    0 Public Transport
32   21   0        3    9.5      7.1       0      0    1         2Wheeler
33   23   1        3   11.7      7.2       0      0    1         2Wheeler
34   23   0        0    6.5      7.3       0      0    1         2Wheeler
35   28   0        9   21.7      7.3       0      1    0 Public Transport
36   26   0        4   12.5      7.4       0      0    1 Public Transport
37   23   0        0    7.7      7.4       0      1    0 Public Transport
38   25   0        2    8.6      7.4       0      0    1 Public Transport
39   24   0        4    8.5      7.5       0      0    1         2Wheeler
40   28   0        6   13.7      7.5       1      0    1         2Wheeler
41   26   0        4   12.6      7.5       0      0    1         2Wheeler
42   28   0        5   13.6      7.5       0      1    0 Public Transport
43   22   0        0    6.5      7.6       0      1    0 Public Transport
44   29   0        5   15.4      7.6       1      0    1 Public Transport
45   31   0        9   15.6      7.6       0      0    1 Public Transport
46   24   0        2    8.7      7.6       0      0    1 Public Transport
47   29   0        6   14.6      7.6       0      0    1 Public Transport
48   26   1        4   12.4      7.6       0      0    1 Public Transport
49   21   1        3   10.6      7.7       0      0    1         2Wheeler
50   24   1        1    8.5      7.7       0      0    1 Public Transport
51   28   0        5   13.6      7.9       0      0    1 Public Transport
52   27   0        3    9.5      7.9       1      0    1 Public Transport
53   20   1        1    8.5      7.9       0      1    0 Public Transport
54   24   0        2    8.5      8.0       0      0    1 Public Transport
55   25   0        3   10.6      8.1       0      0    1 Public Transport
56   21   0        3    9.6      8.1       0      1    0 Public Transport
57   19   0        1    7.5      8.1       0      1    0 Public Transport
58   30   0        8   14.6      8.1       0      1    0 Public Transport
59   29   0        6   14.7      8.1       0      0    1 Public Transport
60   27   0        6   12.6      8.1       0      0    1 Public Transport
61   27   0        4   13.6      8.2       0      1    0 Public Transport
62   27   1        4   13.6      8.2       0      1    0 Public Transport
63   31   0        9   14.6      8.2       0      1    0 Public Transport
64   20   1        2    8.8      8.3       0      0    1 Public Transport
65   24   1        6   10.6      8.4       1      0    1 Public Transport
66   25   0        3    9.8      8.4       0      0    1 Public Transport
67   32   0       10   15.7      8.4       0      0    1 Public Transport
68   24   0        2    8.7      8.4       0      0    1 Public Transport
69   33   0       11   15.6      8.5       0      0    1 Public Transport
70   30   0        8   14.7      8.5       0      1    0 Public Transport
71   24   1        2    8.5      8.5       1      0    1 Public Transport
72   24   0        2    8.5      8.5       0      0    1 Public Transport
73   28   0        4   14.6      8.6       0      0    1 Public Transport
74   23   0        2    8.8      8.6       0      0    1 Public Transport
75   28   0        6   13.6      8.6       0      1    0 Public Transport
76   28   0        6   13.8      8.6       0      0    1 Public Transport
77   24   0        6   12.7      8.7       0      0    1         2Wheeler
78   27   1        5   13.5      8.8       0      0    1 Public Transport
79   26   0        5   12.8      8.8       0      0    1 Public Transport
80   25   0        3   10.6      8.8       0      1    0 Public Transport
81   26   0        3   10.8      8.9       0      1    0 Public Transport
82   29   0        9   22.8      8.9       0      0    1 Public Transport
83   24   0        6   10.5      8.9       0      1    0 Public Transport
84   28   0        6   13.7      8.9       0      0    1 Public Transport
85   28   1        3    9.5      9.0       0      0    1 Public Transport
86   28   0       10   19.7      9.0       0      1    0         2Wheeler
87   26   0        3   10.8      9.0       0      1    0 Public Transport
88   26   0        4   12.7      9.0       1      0    1 Public Transport
89   28   1       10   20.7      9.0       0      0    1 Public Transport
90   28   0        5   14.6      9.0       0      1    0 Public Transport
91   26   1        3   10.9      9.1       0      1    0 Public Transport
92   24   1        0    7.9      9.1       0      0    1 Public Transport
93   29   1       11   25.9      9.1       0      0    1 Public Transport
94   23   1        0    6.6      9.2       0      0    1 Public Transport
95   27   0        5   12.5      9.3       0      0    1 Public Transport
96   23   0        0    6.8      9.3       0      1    0 Public Transport
97   27   0        3   10.6      9.3       0      0    1 Public Transport
98   33   1       11   15.6      9.3       0      0    1 Public Transport
99   28   0        6   13.7      9.4       0      1    0 Public Transport
100  25   0        1    8.6      9.4       0      1    0 Public Transport
101  26   0        4   12.9      9.4       0      1    0 Public Transport
102  26   1        3   10.8      9.4       0      0    1 Public Transport
103  26   0        2    9.6      9.5       0      0    1 Public Transport
104  27   1        6   12.9      9.5       0      0    1 Public Transport
105  24   0        2    8.6      9.5       1      0    1 Public Transport
106  24   1        0    7.6      9.5       0      0    1 Public Transport
107  28   1        5   14.8      9.7       0      0    1 Public Transport
108  25   0        1    8.6      9.7       0      0    1 Public Transport
109  28   0        6   13.6      9.7       1      0    1 Public Transport
110  31   1        7   15.9      9.7       0      0    1 Public Transport
111  27   0        5   12.8      9.7       0      1    0         2Wheeler
112  28   0        5   14.5      9.8       1      0    1 Public Transport
113  27   1        5   13.8      9.8       0      1    0 Public Transport
114  31   0       10   14.9      9.9       0      1    0 Public Transport
115  25   1        3    9.7      9.9       0      0    1 Public Transport
116  26   0        3    9.6      9.9       0      1    0 Public Transport
117  26   0        3    9.8     10.0       0      0    1 Public Transport
118  36   0       17   39.0     10.0       1      0    1              Car
119  26   1        4   12.9     10.0       0      0    1 Public Transport
120  32   1        9   16.9     10.1       0      1    0              Car
121  24   1        2    8.7     10.1       0      0    1 Public Transport
122  35   0       16   28.7     10.2       0      1    0 Public Transport
123  25   0        2    8.7     10.2       0      0    1 Public Transport
124  24   0        0    7.6     10.2       0      0    1 Public Transport
125  28   0        3   10.8     10.2       1      0    1 Public Transport
126  29   0        6   14.7     10.4       0      0    1 Public Transport
127  30   1        8   14.9     10.4       0      0    1 Public Transport
128  26   0        6   17.8     10.4       0      1    0 Public Transport
129  28   0        5   14.7     10.5       1      0    1         2Wheeler
130  28   0        6   13.9     10.5       0      1    0 Public Transport
131  30   0        7   14.6     10.5       0      1    0 Public Transport
132  27   0        5   12.9     10.6       0      1    0 Public Transport
133  27   1        8   20.7     10.7       0      0    1 Public Transport
134  26   0        2    9.8     10.7       0      1    0         2Wheeler
135  23   0        4   11.6     10.7       0      1    0         2Wheeler
136  30   0        6   15.8     10.7       0      0    1 Public Transport
137  24   1        0    7.8     10.7       0      0    1 Public Transport
138  25   1        7   13.6     10.7       0      0    1         2Wheeler
139  25   0        3   10.7     10.8       0      0    1 Public Transport
140  26   1        4   12.8     10.8       0      1    0 Public Transport
141  33   1       14   34.9     10.9       0      0    1 Public Transport
142  33   0       11   16.7     10.9       1      0    1              Car
143  24   1        3    9.9     10.9       0      0    1 Public Transport
144  21   0        3    9.8     11.0       0      1    0         2Wheeler
145  26   0        4   12.6     11.0       0      1    0         2Wheeler
146  25   0        2    8.6     11.0       0      1    0         2Wheeler
147  31   1        9   14.6     11.1       0      1    0 Public Transport
148  26   0        4   12.9     11.1       0      1    0         2Wheeler
149  39   0       19   47.0     11.2       1      0    1              Car
150  28   0        5   13.7     11.3       0      1    0 Public Transport
151  29   0       11   22.7     11.3       1      0    1         2Wheeler
152  24   1        0    7.7     11.3       1      0    1 Public Transport
153  29   0        9   13.7     11.4       0      0    1 Public Transport
154  30   0        8   14.7     11.4       1      1    0         2Wheeler
155  23   0        4   10.6     11.4       0      0    1         2Wheeler
156  28   0        9   23.8     11.4       0      1    0 Public Transport
157  27   0        6   12.7     11.5       0      0    1 Public Transport
158  33   0        9   17.0     11.6       1      0    1              Car
159  30   0        6   15.6     11.6       0      1    0 Public Transport
160  23   0        0    6.9     11.7       0      0    1         2Wheeler
161  29   0        7   14.8     11.7       0      1    0 Public Transport
162  24   0        4   12.7     11.7       0      0    1         2Wheeler
163  23   0        0    7.7     11.7       0      0    1         2Wheeler
164  29   0        7   13.6     11.7       0      1    0 Public Transport
165  27   0        5   12.8     11.8       0      1    0         2Wheeler
166  32   0       10   15.6     11.8       0      1    0              Car
167  26   0        6   11.8     11.9       0      1    0 Public Transport
168  30   0        6   15.7     11.9       1      0    1 Public Transport
169  30   1       10   28.8     11.9       1      0    1         2Wheeler
170  30   0        6   15.6     11.9       0      1    0 Public Transport
171  28   1        6   13.7     11.9       0      0    1 Public Transport
172  30   0        8   14.8     12.0       0      0    1 Public Transport
173  22   1        2   12.7     12.0       0      0    1 Public Transport
174  30   0       10   29.9     12.1       0      0    1 Public Transport
175  25   1        4   11.7     12.1       1      0    1 Public Transport
176  31   0       10   14.9     12.1       0      0    1 Public Transport
177  24   1        0    7.7     12.1       0      0    1 Public Transport
178  33   0       13   36.0     12.2       1      1    0              Car
179  25   0        5   18.9     12.2       0      1    0         2Wheeler
180  24   0        0    6.8     12.2       0      1    0 Public Transport
181  26   0        2    9.8     12.2       0      1    0         2Wheeler
182  26   0        3   10.7     12.2       1      0    1 Public Transport
183  18   0        0    6.8     12.2       0      0    1 Public Transport
184  26   1        5   12.7     12.2       0      0    1 Public Transport
185  27   0        8   20.7     12.2       0      0    1         2Wheeler
186  33   0       11   17.0     12.3       1      0    1              Car
187  29   0        7   14.7     12.3       0      0    1 Public Transport
188  33   0       10   16.9     12.3       0      0    1              Car
189  24   0        1    7.7     12.4       1      0    1 Public Transport
190  31   0        7   17.0     12.4       1      0    1              Car
191  27   0        4   13.8     12.4       0      0    1 Public Transport
192  26   1        5   12.7     12.5       0      0    1 Public Transport
193  28   0        5   14.9     12.5       1      0    1         2Wheeler
194  24   1        1    8.8     12.6       1      1    0         2Wheeler
195  30   1        8   14.7     12.6       0      0    1 Public Transport
196  24   1        2    8.7     12.6       0      1    0         2Wheeler
197  27   0        8   20.7     12.6       0      0    1 Public Transport
198  38   0       19   44.0     12.6       1      0    1              Car
199  25   0        5   13.7     12.7       1      0    1         2Wheeler
200  24   0        1    8.9     12.7       0      0    1 Public Transport
201  22   0        0    6.8     12.7       0      0    1 Public Transport
202  25   1        4   11.8     12.8       0      0    1 Public Transport
203  34   1       11   17.0     12.8       0      0    1              Car
204  27   0        6   12.8     12.8       0      0    1 Public Transport
205  24   1        1    8.8     12.8       0      0    1 Public Transport
206  25   0        3   10.8     12.8       0      0    1 Public Transport
207  28   0        6   13.8     12.9       0      0    1 Public Transport
208  34   1       15   37.0     12.9       1      0    1         2Wheeler
209  31   0       12   43.0     13.0       1      0    1              Car
210  22   1        0    6.9     13.0       0      0    1         2Wheeler
211  18   0        0    6.7     13.0       0      0    1         2Wheeler
212  24   0        1    7.8     13.1       0      0    1 Public Transport
213  25   0        2    8.9     13.2       0      1    0         2Wheeler
214  26   0        5   12.8     13.2       0      1    0         2Wheeler
215  26   0        4   12.7     13.3       0      0    1 Public Transport
216  27   0        6   12.9     13.3       0      0    1 Public Transport
217  24   1        2    8.9     13.4       0      0    1 Public Transport
218  26   0        8   20.9     13.4       0      1    0         2Wheeler
219  22   0        0    7.0     13.5       0      0    1         2Wheeler
220  26   0        4   12.8     13.6       1      1    0         2Wheeler
221  38   0       19   54.0     13.6       1      0    1              Car
222  36   0       18   44.0     13.6       1      1    0              Car
223  27   0        1    8.9     13.6       0      0    1 Public Transport
224  28   0        7   12.7     13.6       0      0    1 Public Transport
225  28   0        3   10.9     13.6       0      0    1 Public Transport
226  28   0        4   14.9     13.7       0      0    1 Public Transport
227  31   0        7   15.9     13.7       0      0    1 Public Transport
228  23   0        0    6.9     13.7       0      0    1         2Wheeler
229  24   0        2    8.9     13.8       0      1    0         2Wheeler
230  34   0       14   34.0     13.8       0      1    0              Car
231  26   0        7   18.8     13.8       0      0    1 Public Transport
232  30   0        7   14.9     14.0       0      0    1 Public Transport
233  32   0       11   15.8     14.1       1      0    1              Car
234  27   0        9   23.9     14.1       0      0    1 Public Transport
235  38   1       20   42.0     14.1       1      0    1              Car
236  27   0        4   13.9     14.2       0      0    1 Public Transport
237  26   0        4   12.8     14.2       0      0    1 Public Transport
238  24   0        2    9.0     14.2       0      1    0         2Wheeler
239  30   0        8   14.8     14.3       0      0    1 Public Transport
240  28   0        4   14.9     14.3       0      0    1 Public Transport
241  31   0       12   34.0     14.4       1      0    1              Car
242  32   0       10   15.9     14.6       0      1    0              Car
243  32   1       10   15.8     14.6       1      1    0              Car
244  26   0        5   12.8     15.0       0      0    1 Public Transport
245  34   0       14   28.8     15.0       0      1    0 Public Transport
246  27   0        9   20.8     15.1       0      0    1 Public Transport
247  24   0        2    9.0     15.1       0      1    0         2Wheeler
248  28   0        6   13.9     15.1       0      1    0 Public Transport
249  27   0        5   13.8     15.2       0      0    1 Public Transport
250  22   0        0    6.8     15.2       1      0    1         2Wheeler
251  25   0        2    8.8     15.2       0      1    0         2Wheeler
252  23   0        1    7.9     15.2       0      0    1 Public Transport
253  24   0        0    6.9     15.3       0      0    1         2Wheeler
254  21   1        3    9.8     15.3       0      0    1 Public Transport
255  29   0        5   14.8     15.4       0      0    1 Public Transport
256  30   0        8   15.0     15.5       1      0    1         2Wheeler
257  30   0        8   14.9     15.5       1      0    1         2Wheeler
258  28   1        9   23.8     15.5       0      1    0 Public Transport
259  27   1        6   12.9     15.6       0      0    1 Public Transport
260  26   0        6   18.8     15.6       0      0    1 Public Transport
261  26   0        3   10.8     15.6       0      1    0 Public Transport
262  26   0        7   18.8     15.7       0      1    0         2Wheeler
263  22   1        0    6.9     15.7       0      0    1 Public Transport
264  24   0        1    8.8     15.8       0      1    0         2Wheeler
265  23   1        2    8.9     15.8       0      0    1 Public Transport
266  25   0        2    8.9     15.8       0      0    1 Public Transport
267  37   1       18   41.0     15.9       1      0    1              Car
268  25   0        3    9.9     15.9       0      0    1 Public Transport
269  23   0        0    8.0     15.9       0      0    1         2Wheeler
270  22   0        1    7.9     16.3       1      0    1         2Wheeler
271  26   0        6   23.0     16.3       0      1    0         2Wheeler
272  31   0        8   15.9     16.4       0      0    1 Public Transport
273  32   0       14   30.9     16.5       0      1    0              Car
274  32   1        9   15.9     16.6       0      1    0 Public Transport
275  25   0        1    8.9     16.8       0      1    0         2Wheeler
276  40   1       20   41.9     16.9       1      0    1              Car
277  29   0        6   14.9     17.0       0      1    0 Public Transport
278  24   0        0    7.9     17.1       0      0    1         2Wheeler
279  25   0        3    9.9     17.2       0      0    1 Public Transport
280  27   0        4   13.9     17.3       0      1    0 Public Transport
281  33   0       14   33.0     17.3       0      0    1              Car
282  31   0       11   33.0     17.8       1      0    1              Car
283  23   0        3    9.9     17.9       0      0    1 Public Transport
284  39   0       21   46.0     18.1       1      0    1              Car
285  40   0       20   48.0     18.2       1      0    1              Car
286  39   0       21   51.0     18.6       1      0    1              Car
287  29   1        7   15.0     19.0       1      0    1         2Wheeler
288  33   1       10   17.0     19.1       0      0    1              Car
289  26   0        4   13.0     19.1       1      0    1         2Wheeler
290  40   0       22   45.0     19.8       1      0    1              Car
291  37   0       19   42.0     20.7       1      0    1              Car
292  43   1       24   52.0     20.8       1      0    1              Car
293  28   1        7   13.0     21.0       1      1    0         2Wheeler
294  34   0       14   38.0     21.3       1      0    1              Car
295  40   0       20   57.0     21.4       1      0    1              Car
296  38   0       19   44.0     21.5       1      0    1              Car
297  37   0       19   45.0     21.5       1      0    1              Car
298  37   0       19   47.0     22.8       1      0    1              Car
299  39   1       21   50.0     23.4       1      0    1              Car
summary(Cars1)
      Age             MBA            Work.Exp          Salary     
 Min.   :18.00   Min.   :0.0000   Min.   : 0.000   Min.   : 6.50  
 1st Qu.:25.00   1st Qu.:0.0000   1st Qu.: 3.000   1st Qu.: 9.55  
 Median :27.00   Median :0.0000   Median : 5.000   Median :12.90  
 Mean   :27.49   Mean   :0.2408   Mean   : 5.967   Mean   :15.61  
 3rd Qu.:30.00   3rd Qu.:0.0000   3rd Qu.: 8.000   3rd Qu.:15.60  
 Max.   :43.00   Max.   :1.0000   Max.   :24.000   Max.   :57.00  
    Distance        license          Female            Male       
 Min.   : 3.30   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
 1st Qu.: 8.60   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
 Median :11.30   Median :0.000   Median :0.0000   Median :1.0000  
 Mean   :11.44   Mean   :0.214   Mean   :0.3144   Mean   :0.6856  
 3rd Qu.:13.60   3rd Qu.:0.000   3rd Qu.:1.0000   3rd Qu.:1.0000  
 Max.   :23.40   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
              target   
 2Wheeler        : 63  
 Car             : 39  
 Public Transport:197  



str(Cars1)
'data.frame':   299 obs. of  9 variables:
 $ Age     : int  23 29 28 27 28 22 27 25 27 27 ...
 $ MBA     : int  0 0 1 0 0 0 0 0 0 0 ...
 $ Work.Exp: int  4 7 5 4 5 1 4 4 4 4 ...
 $ Salary  : num  8.3 13.4 13.4 13.4 14.4 7.5 13.5 11.5 13.5 13.4 ...
 $ Distance: num  3.3 4.1 4.5 4.6 5.1 5.1 5.2 5.2 5.3 5.5 ...
 $ license : int  0 0 0 0 0 0 0 0 1 1 ...
 $ Female  : int  1 0 1 0 0 0 0 1 0 0 ...
 $ Male    : int  0 1 0 1 1 1 1 0 1 1 ...
 $ target  : Factor w/ 3 levels "2Wheeler","Car",..: 3 3 3 3 1 3 3 3 3 3 ...
attach(Cars1)
set.seed(777)
pd<-sample(2,nrow(Cars1),replace=TRUE, prob=c(0.7,0.3))

train1<-Cars1[pd==1,]
val1<-Cars1[pd==2,]
attach(train1)
attach(val1)

#10 Fold with LDA
library(MASS)
library(ISLR)
Eq.3 <-  target~.
cv_LDA<-lapply(folds,function(x){
  train<-train1[x,]
  test<-val1[-x,]
  lda_1<-lda(Eq.3   , train1)
  lda1.pred<-predict(lda_1, newdata=test)
  ldapredclass<-lda1.pred$class
  tab.LDA<-table(ldapredclass,test$target)
  sum(diag(tab.LDA))/sum(tab.LDA)
})

str(cv_LDA)
List of 10
 $ Fold01: num 0.84
 $ Fold02: num 0.833
 $ Fold03: num 0.835
 $ Fold04: num 0.842
 $ Fold05: num 0.827
 $ Fold06: num 0.808
 $ Fold07: num 0.84
 $ Fold08: num 0.847
 $ Fold09: num 0.855
 $ Fold10: num 0.844
fit.LDA<-mean(unlist(cv_LDA))
fit.LDA
[1] 0.8371421
#########
##Accuracy of LDA post Smote is 83.71%
#########
#10 Fold on Decision Trees post SMOTE

cv_DT<-lapply(folds,function(x){
  train<-train1[x,]
  test<-val1[-x,]
  DT<-rpart(Eq.3, method="class",train)
  pred = predict(DT, type="class",newdata=test)
  tabDT<-table( pred,test$target)
  sum(diag(tabDT))/sum(tabDT)
})

str(cv_DT)
List of 10
 $ Fold01: num 0.593
 $ Fold02: num 0.631
 $ Fold03: num 0.633
 $ Fold04: num 0.526
 $ Fold05: num 0.507
 $ Fold06: num 0.616
 $ Fold07: num 0.654
 $ Fold08: num 0.639
 $ Fold09: num 0.763
 $ Fold10: num 0.636
fit.DT<-mean(unlist(cv_DT))
fit.DT
[1] 0.6198609
########
##Accuracy of Decision trees is 61.98%
########

#10 Vold Validation with NB

cv_NB<-lapply(folds,function(x){
  train.NB.kval<-train1[x,]
  test.NB.kval<-val1[-x,]
  NB.kval<-naiveBayes(x=train.NB.kval[-1], y=train.NB.kval$target)
  y_pred.NB.kval<-predict( NB.kval,newdata=test.NB.kval[-1])
  cm.NB.kval=table(test.NB.kval[,1],y_pred.NB.kval)
  sum(diag(cm.NB.kval))/sum(cm.NB.kval)
})

str(cv_NB)
List of 10
 $ Fold01: num 0.0247
 $ Fold02: num 0.0357
 $ Fold03: num 0.0253
 $ Fold04: num 0.0263
 $ Fold05: num 0.0133
 $ Fold06: num 0.0411
 $ Fold07: num 0.0123
 $ Fold08: num 0.111
 $ Fold09: num 0.0132
 $ Fold10: num 0.026
fit.NB<-mean(unlist(cv_NB))
fit.NB
[1] 0.03290558
#####################
##Accuracy of NB is 3.9%
#####################


###SVM
####2_D PLOT
library(rpart)
svm.2<-svm(target~., data=train1, kernel="linear")
summary(svm.2)

Call:
svm(formula = target ~ ., data = train1, kernel = "linear")


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  linear 
       cost:  1 
      gamma:  0.125 

Number of Support Vectors:  109

 ( 52 46 11 )


Number of Classes:  3 

Levels: 
 2Wheeler Car Public Transport
##Confusion matrix

svm.full<-svm(target~., data=train1, kernel="radial")
summary(svm.full)

Call:
svm(formula = target ~ ., data = train1, kernel = "radial")


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 
      gamma:  0.125 

Number of Support Vectors:  126

 ( 63 45 18 )


Number of Classes:  3 

Levels: 
 2Wheeler Car Public Transport
y_pred.svm.full<-predict(svm.full,newdata=val1[,-9])
y_pred.svm.full
               4                9               11               15 
Public Transport Public Transport Public Transport Public Transport 
              18               26               29               30 
Public Transport Public Transport Public Transport Public Transport 
              31               32               33               37 
Public Transport Public Transport Public Transport Public Transport 
              46               47               48               49 
Public Transport Public Transport Public Transport Public Transport 
              58               61               63               65 
Public Transport Public Transport Public Transport Public Transport 
              69               72               73               76 
Public Transport Public Transport Public Transport Public Transport 
              89               90               91               94 
Public Transport Public Transport Public Transport Public Transport 
              96               99              100              101 
Public Transport Public Transport Public Transport Public Transport 
             105              106              112              118 
Public Transport Public Transport Public Transport              Car 
             119              120              126              129 
Public Transport Public Transport Public Transport Public Transport 
             132              141              142              151 
Public Transport Public Transport              Car              Car 
             154              161              164              165 
        2Wheeler Public Transport Public Transport Public Transport 
             174              176              177              185 
Public Transport Public Transport Public Transport Public Transport 
             188              189              190              192 
Public Transport Public Transport Public Transport Public Transport 
             195              201              209              210 
Public Transport Public Transport              Car Public Transport 
             211              214              221              223 
Public Transport         2Wheeler              Car Public Transport 
             224              230              234              244 
Public Transport Public Transport Public Transport Public Transport 
             246              250              251              255 
Public Transport Public Transport         2Wheeler Public Transport 
             257              259              265              267 
        2Wheeler Public Transport Public Transport              Car 
             270              273              275              276 
Public Transport Public Transport         2Wheeler              Car 
             277              286              287              290 
        2Wheeler              Car         2Wheeler              Car 
             291              294 
             Car              Car 
Levels: 2Wheeler Car Public Transport
#Confusion matrix


head(val1)
   Age MBA Work.Exp Salary Distance license Female Male           target
4   27   0        4   13.4      4.6       0      0    1 Public Transport
9   27   0        4   13.5      5.3       1      0    1 Public Transport
11  32   0        9   15.5      5.5       0      0    1 Public Transport
15  23   0        2    8.6      6.1       0      0    1 Public Transport
18  26   0        3    9.5      6.2       0      1    0 Public Transport
26  30   0        8   14.6      6.5       0      1    0 Public Transport
head(train1)
  Age MBA Work.Exp Salary Distance license Female Male           target
1  23   0        4    8.3      3.3       0      1    0 Public Transport
2  29   0        7   13.4      4.1       0      0    1 Public Transport
3  28   1        5   13.4      4.5       0      1    0 Public Transport
5  28   0        5   14.4      5.1       0      0    1         2Wheeler
6  22   0        1    7.5      5.1       0      0    1 Public Transport
7  27   0        4   13.5      5.2       0      0    1 Public Transport
cm.SVMB.full=table(val1[,9],y_pred.svm.full)
cm.SVMB.full
                  y_pred.svm.full
                   2Wheeler Car Public Transport
  2Wheeler                6   1               10
  Car                     0  10                5
  Public Transport        1   0               53
accuracy.svm.full<-sum(diag(cm.SVMB.full))/sum(cm.SVMB.full)
accuracy.svm.full
[1] 0.8023256
##
##Accuracy of SVM post SMOTE is 80.23%
###3
#Tune
set.seed(77)
tune.svm<-tune(svm, target~.,data=train1,ranges=list(epsilon=seq(0,1,0.1), cost=2^(2:9)))
summary(tune.svm)

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation 

- best parameters:
 epsilon cost
       0   64

- best performance: 0.2010823 

- Detailed performance results:
   epsilon cost     error dispersion
1      0.0    4 0.2064935 0.05921759
2      0.1    4 0.2064935 0.05921759
3      0.2    4 0.2064935 0.05921759
4      0.3    4 0.2064935 0.05921759
5      0.4    4 0.2064935 0.05921759
6      0.5    4 0.2064935 0.05921759
7      0.6    4 0.2064935 0.05921759
8      0.7    4 0.2064935 0.05921759
9      0.8    4 0.2064935 0.05921759
10     0.9    4 0.2064935 0.05921759
11     1.0    4 0.2064935 0.05921759
12     0.0    8 0.2153680 0.08001342
13     0.1    8 0.2153680 0.08001342
14     0.2    8 0.2153680 0.08001342
15     0.3    8 0.2153680 0.08001342
16     0.4    8 0.2153680 0.08001342
17     0.5    8 0.2153680 0.08001342
18     0.6    8 0.2153680 0.08001342
19     0.7    8 0.2153680 0.08001342
20     0.8    8 0.2153680 0.08001342
21     0.9    8 0.2153680 0.08001342
22     1.0    8 0.2153680 0.08001342
23     0.0   16 0.2058442 0.08064332
24     0.1   16 0.2058442 0.08064332
25     0.2   16 0.2058442 0.08064332
26     0.3   16 0.2058442 0.08064332
27     0.4   16 0.2058442 0.08064332
28     0.5   16 0.2058442 0.08064332
29     0.6   16 0.2058442 0.08064332
30     0.7   16 0.2058442 0.08064332
31     0.8   16 0.2058442 0.08064332
32     0.9   16 0.2058442 0.08064332
33     1.0   16 0.2058442 0.08064332
34     0.0   32 0.2012987 0.10149338
35     0.1   32 0.2012987 0.10149338
36     0.2   32 0.2012987 0.10149338
37     0.3   32 0.2012987 0.10149338
38     0.4   32 0.2012987 0.10149338
39     0.5   32 0.2012987 0.10149338
40     0.6   32 0.2012987 0.10149338
41     0.7   32 0.2012987 0.10149338
42     0.8   32 0.2012987 0.10149338
43     0.9   32 0.2012987 0.10149338
44     1.0   32 0.2012987 0.10149338
45     0.0   64 0.2010823 0.09343058
46     0.1   64 0.2010823 0.09343058
47     0.2   64 0.2010823 0.09343058
48     0.3   64 0.2010823 0.09343058
49     0.4   64 0.2010823 0.09343058
50     0.5   64 0.2010823 0.09343058
51     0.6   64 0.2010823 0.09343058
52     0.7   64 0.2010823 0.09343058
53     0.8   64 0.2010823 0.09343058
54     0.9   64 0.2010823 0.09343058
55     1.0   64 0.2010823 0.09343058
56     0.0  128 0.2194805 0.09422258
57     0.1  128 0.2194805 0.09422258
58     0.2  128 0.2194805 0.09422258
59     0.3  128 0.2194805 0.09422258
60     0.4  128 0.2194805 0.09422258
61     0.5  128 0.2194805 0.09422258
62     0.6  128 0.2194805 0.09422258
63     0.7  128 0.2194805 0.09422258
64     0.8  128 0.2194805 0.09422258
65     0.9  128 0.2194805 0.09422258
66     1.0  128 0.2194805 0.09422258
67     0.0  256 0.2142857 0.11591712
68     0.1  256 0.2142857 0.11591712
69     0.2  256 0.2142857 0.11591712
70     0.3  256 0.2142857 0.11591712
71     0.4  256 0.2142857 0.11591712
72     0.5  256 0.2142857 0.11591712
73     0.6  256 0.2142857 0.11591712
74     0.7  256 0.2142857 0.11591712
75     0.8  256 0.2142857 0.11591712
76     0.9  256 0.2142857 0.11591712
77     1.0  256 0.2142857 0.11591712
78     0.0  512 0.2285714 0.10580360
79     0.1  512 0.2285714 0.10580360
80     0.2  512 0.2285714 0.10580360
81     0.3  512 0.2285714 0.10580360
82     0.4  512 0.2285714 0.10580360
83     0.5  512 0.2285714 0.10580360
84     0.6  512 0.2285714 0.10580360
85     0.7  512 0.2285714 0.10580360
86     0.8  512 0.2285714 0.10580360
87     0.9  512 0.2285714 0.10580360
88     1.0  512 0.2285714 0.10580360
best.svm<-tune.svm$best.model
summary(best.svm)

Call:
best.tune(method = svm, train.x = target ~ ., data = train1, 
    ranges = list(epsilon = seq(0, 1, 0.1), cost = 2^(2:9)))


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  64 
      gamma:  0.125 

Number of Support Vectors:  96

 ( 47 34 15 )


Number of Classes:  3 

Levels: 
 2Wheeler Car Public Transport
best.par<-tune.svm$best.parameters
summary(best.par)
    epsilon       cost   
 Min.   :0   Min.   :64  
 1st Qu.:0   1st Qu.:64  
 Median :0   Median :64  
 Mean   :0   Mean   :64  
 3rd Qu.:0   3rd Qu.:64  
 Max.   :0   Max.   :64  
#CM

y_pred.svm.best<-predict(best.svm,newdata=val1[-9])

#Confusion matrix
cm.SVMB.best=table(val1[,9],y_pred.svm.best)
cm.SVMB.best
                  y_pred.svm.best
                   2Wheeler Car Public Transport
  2Wheeler                6   2                9
  Car                     0  10                5
  Public Transport        1   0               53
accuracy.svm.best<-sum(diag(cm.SVMB.best))/sum(cm.SVMB.best)
accuracy.svm.best
[1] 0.8023256
#################
## Accuracy after tuning SVM is 80.23%
################  
#K- nearest neighbour
names(Cars1)
[1] "Age"      "MBA"      "Work.Exp" "Salary"   "Distance" "license" 
[7] "Female"   "Male"     "target"  
kneig = knn(train = Cars1[,-9],test = Cars1[,-9],cl= Cars1$target)
cm.knn= table(Actual=Cars1$target, Predicted = kneig)
accuracy.knn<-sum(diag(cm.knn))/sum(cm.knn)
accuracy.knn
[1] 1
#
#Predicting the 2 rows using various methods

Cars2=read.csv("Actual_Cars_data.csv", header=T)
Cars2 = na.omit(Cars2)
predictdata = read.csv("cars.test.csv",header = T)
Cars2$Gender  <- as.numeric(Cars2$Gender)
predictdata$Gender <- as.numeric(predictdata$Gender)
predictdata$Engineer <- as.numeric(predictdata$Engineer)
predictdata$MBA <- as.numeric(predictdata$MBA)
predictdata$license <- as.numeric(predictdata$license)
names(Cars2)
[1] "Age"       "Gender"    "Engineer"  "MBA"       "Work.Exp"  "Salary"   
[7] "Distance"  "license"   "Transport"
names(predictdata)
[1] "Age"      "Gender"   "Engineer" "MBA"      "Work.Exp" "Salary"  
[7] "Distance" "license" 
#Using KNN 
knn.test = knn(train= Cars2[,-9], test= predictdata[,-9], cl=Cars2[,9], k=3)
predictdata$Transport.KNN = knn.test
predictdata
  Age Gender Engineer MBA Work.Exp Salary Distance license
1  25      2        0   0        2     10        5       1
2  25      1        1   0        2     10        5       0
     Transport.KNN
1 Public Transport
2 Public Transport
##Predicting is PUBLIC TRANSPORT
names(predictdata)
[1] "Age"           "Gender"        "Engineer"      "MBA"          
[5] "Work.Exp"      "Salary"        "Distance"      "license"      
[9] "Transport.KNN"
#Lets us use LDA
lda.predidct = lda(Cars2$Transport~., data=Cars2[,-9])
a = predict(lda.predidct, newdata = predictdata[,-9])
predictdata$Transport.LDA = a$class
predictdata
  Age Gender Engineer MBA Work.Exp Salary Distance license
1  25      2        0   0        2     10        5       1
2  25      1        1   0        2     10        5       0
     Transport.KNN    Transport.LDA
1 Public Transport Public Transport
2 Public Transport Public Transport
#Even LDA predicts Public Transport
# Lets us use SVM
predict.svm = svm(Cars2$Transport~., data=Cars2[,-9], kernel= "polynomial")
p.svm = predict(predict.svm, newdata = predictdata[,-c(9,10)])
predictdata$Transport.SVM = p.svm
predictdata[,c(9,10,11)]            
     Transport.KNN    Transport.LDA    Transport.SVM
1 Public Transport Public Transport Public Transport
2 Public Transport Public Transport Public Transport
#Prediction is Public Transport using all the methods
####################################

Slide With Plot

plot of chunk unnamed-chunk-2