Model Fit Comparison
.

Quadratic Model
\(y =a+ bx + cx^{2}\), where y is Life Satisfaction and x is Social Time.
Table S3a.1. Linear and quadratic effects of social time.
| Â |
 |
Life Satisfaction |
| Â |
 |
B |
CI |
p |
| (Intercept) |
 |
-0.00 |
-0.15 – 0.15 |
1.00 |
| Linear |
 |
0.24 |
0.09 – 0.38 |
.002 |
| Quadratic |
 |
-0.08 |
-0.23 – 0.07 |
.281 |
| Observations |
 | 173 |
| R2 / adj. R2 |
 | .063 / .052 |
.

Diagnostics
.
Assumptions
.
Table S3a.2. Omnibus diagnostic statistics for the quadratic model.
| |
Value |
p-value |
Decision |
| Global Stat |
1.873 |
0.76 |
Assumptions acceptable. |
| Skewness |
1.838 |
0.17 |
Assumptions acceptable. |
| Kurtosis |
0.021 |
0.88 |
Assumptions acceptable. |
| Link Function |
0.000 |
1.00 |
Assumptions acceptable. |
| Heteroscedasticity |
0.014 |
0.91 |
Assumptions acceptable. |
Notes. Tests are directional test statistic
.

Influential Cases.
.

Table S3a.3. Most influential cases by leverage, studentized residual, and Cook’s distance.
| |
StudRes |
Hat |
CookD |
| 22 |
-3.1 |
0.01 |
0.03 |
| 74 |
1.1 |
0.17 |
0.09 |
| 131 |
-2.6 |
0.07 |
0.17 |
.
Replottig: Influential Cases Removed

Moderation Model
\(y =x + x^{2} + m +mx + mx^{2}\), where y is Life Satisfaction, x is Relatedness, and m is Social Time.
Table S3a.4. Linear and quadratic effects of social time.
| Â |
 |
Life Satisfaction |
| Â |
 |
B |
CI |
p |
| (Intercept) |
 |
-0.03 |
-0.18 – 0.12 |
.713 |
| Moderation |
 |
-0.14 |
-0.28 – 0.00 |
.057 |
| Observations |
 | 173 |
| R2 / adj. R2 |
 | .215 / .192 |
Plotting: All Observations

Diagnostics
.
Assumptions
.
Table S3b.5. Omnibus diagnostic statistics for the moderation model.
| |
Value |
p-value |
Decision |
| Global Stat |
3.45 |
0.49 |
Assumptions acceptable. |
| Skewness |
0.41 |
0.52 |
Assumptions acceptable. |
| Kurtosis |
0.24 |
0.62 |
Assumptions acceptable. |
| Link Function |
2.31 |
0.13 |
Assumptions acceptable. |
| Heteroscedasticity |
0.48 |
0.49 |
Assumptions acceptable. |
.

Figure S3b.11. Omnibus diagnostic statistics for the moderation model.