Install necessary packages
# install.packages('tm')
# install.packages('RColorBrewer')
# install.packages('wordcloud')
library('tm')
## Warning: package 'tm' was built under R version 3.4.4
## Loading required package: NLP
library('RColorBrewer')
library('wordcloud')
## Warning: package 'wordcloud' was built under R version 3.4.4
Process data
Zynga <- readRDS("D:\\New folder (7)\\Zynga.RDS")
Ztweets <- Zynga$text
clean.text = function(x)
{
x = tolower(x)
x = gsub("rt", "", x)
x = gsub("@\\w+", "", x)
x = gsub("[[:punct:]]", "", x)
x = gsub("[[:digit:]]", "", x)
x = gsub("http\\w+", "", x)
x = gsub("[ |\t]{2,}", "", x)
x = gsub("^ ", "", x)
x = gsub(" $", "", x)
return(x)
}
Encoding(Ztweets) <- "UTF-8"
library('stringr')
## Warning: package 'stringr' was built under R version 3.4.3
Ztweets=str_replace_all(Ztweets,"[^[:graph:]]", " ")
Zyngatweets = clean.text(Ztweets)
Wordcloud
corpus = Corpus(VectorSource(Zyngatweets))
tdm = TermDocumentMatrix(
corpus,
control = list(
wordLengths=c(3,20),
removePunctuation = TRUE,
stopwords = c("the", "a", stopwords("english")),
removeNumbers = TRUE, tolower = TRUE) )
tdm = as.matrix(tdm)
word_freqs = sort(rowSums(tdm), decreasing=TRUE)
word_freqs = word_freqs[-(1:9)]
dm = data.frame(word=names(word_freqs), freq=word_freqs)
wordcloud(head(dm$word, 50), head(dm$freq, 50), random.order=FALSE, colors=brewer.pal(8, "Dark2"))
head(word_freqs, 10)
## looking can prized play âï adult petra
## 258 232 219 207 200 187 187
## game jeneva found
## 179 175 167
histogram1 sentiment
pos.words = scan('C:\\Users\\Xiayang Xiao\\Downloads\\positive-words.txt', what='character', comment.char=';')
neg.words = scan('C:\\Users\\Xiayang Xiao\\Downloads\\negative-words.txt', what='character', comment.char=';')
neg.words = c(neg.words, 'wtf', 'fail')
require(plyr)
## Loading required package: plyr
## Warning: package 'plyr' was built under R version 3.4.3
require(stringr)
require(stringi)
## Loading required package: stringi
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
scores = laply(sentences, function(sentence, pos.words, neg.words) {
sentence = gsub('[[:punct:]]', '', sentence)
sentence = gsub('[[:cntrl:]]', '', sentence)
sentence = gsub('\\d+', '', sentence)
sentence = tolower(sentence)
word.list = str_split(sentence, '\\s+')
words = unlist(word.list)
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
score = sum(pos.matches) - sum(neg.matches)
return(score)
}, pos.words, neg.words, .progress=.progress )
scores.df = data.frame(score=scores, text=sentences)
return(scores.df)
}
sentiment.scores= score.sentiment(Zyngatweets, pos.words, neg.words, .progress='none')
score <- sentiment.scores$score
library(plotly)
## Warning: package 'plotly' was built under R version 3.4.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.4.3
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:NLP':
##
## annotate
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following objects are masked from 'package:plyr':
##
## arrange, mutate, rename, summarise
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
p <- plot_ly(x = ~score, type = "histogram")
p
## Warning: package 'bindrcpp' was built under R version 3.4.3
histogram2 weekday
Zynga$days <- weekdays(as.POSIXlt(Zynga$created))
p <- plot_ly(x = ~Zynga$days, type = "histogram")
p