pacman::p_load(mlmRev,HSAUR3,knitr,kableExtra,readr,dplyr,ggplot2,tidyr,car,magrittr,tibble,data.table,stringr)
head(dta1 <- read.csv(paste0("http://",IDPW,"140.116.183.121/~sheu/dataM/Data/nlsy86long.csv"), header = T))
## id sex race time grade year month math read
## 1 2390 Female Majority 1 0 6 67 14.285714 19.047619
## 2 2560 Female Majority 1 0 6 66 20.238095 21.428571
## 3 3740 Female Majority 1 0 6 67 17.857143 21.428571
## 4 4020 Male Majority 1 0 5 60 7.142857 7.142857
## 5 6350 Male Majority 1 1 7 78 29.761905 30.952381
## 6 7030 Male Majority 1 0 5 62 14.285714 17.857143
head(gather(dta1,"test_var", "test_score", 8:9))
## id sex race time grade year month test_var test_score
## 1 2390 Female Majority 1 0 6 67 math 14.285714
## 2 2560 Female Majority 1 0 6 66 math 20.238095
## 3 3740 Female Majority 1 0 6 67 math 17.857143
## 4 4020 Male Majority 1 0 5 60 math 7.142857
## 5 6350 Male Majority 1 1 7 78 math 29.761905
## 6 7030 Male Majority 1 0 5 62 math 14.285714
head(dta2 <- Vocab)
## year sex education vocabulary
## 20040001 2004 Female 9 3
## 20040002 2004 Female 14 6
## 20040003 2004 Male 14 9
## 20040005 2004 Female 17 8
## 20040008 2004 Male 14 1
## 20040010 2004 Male 14 7
str(dta2)
## 'data.frame': 21638 obs. of 4 variables:
## $ year : int 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 ...
## $ sex : Factor w/ 2 levels "Female","Male": 1 1 2 1 2 2 1 2 2 1 ...
## $ education : int 9 14 14 17 14 14 12 10 11 9 ...
## $ vocabulary: int 3 6 9 8 1 7 6 6 5 1 ...
dta2 %>%
rename(gender = sex) %>%
group_by(year, gender) %>%
summarize(edu_m= mean(education, na.rm = T),
edu_se= sd(education, na.rm = T)/sqrt(n())) %>%
ggplot(data = ., aes(x = year, y = edu_m, color = gender)) +
geom_point() +
geom_line(aes(group = gender)) +
geom_errorbar(aes(ymin = edu_m - 2*edu_se, ymax = edu_m + 2*edu_se), width = .1) +
labs(x = "Year", y = "Average Education score") +
theme_bw()
dta2 %>%
rename(gender = sex) %>%
group_by(year, gender) %>%
summarize(voc_m= mean(vocabulary, na.rm = T),
voc_se= sd(vocabulary, na.rm = T)/sqrt(n())) %>%
ggplot(data = ., aes(x = year, y = voc_m, color = gender)) +
geom_point() +
geom_line(aes(group = gender)) +
geom_errorbar(aes(ymin = voc_m - 2*voc_se, ymax = voc_m + 2*voc_se), width = .1) +
labs(x = "Year", y = "Average Vocabulart score") +
theme_bw()
head(dta3 <- read.table(paste0("http://",IDPW,"140.116.183.121/~sheu/dataM/Data/probeL.txt"), header = T))
## ID Response_Time Position
## 1 S01 51 1
## 2 S01 36 2
## 3 S01 50 3
## 4 S01 35 4
## 5 S01 42 5
## 6 S02 27 1
dta3 %>%
mutate(Position = paste("Pos", Position)) %>%
spread(Position, Response_Time)
## ID Pos 1 Pos 2 Pos 3 Pos 4 Pos 5
## 1 S01 51 36 50 35 42
## 2 S02 27 20 26 17 27
## 3 S03 37 22 41 37 30
## 4 S04 42 36 32 34 27
## 5 S05 27 18 33 14 29
## 6 S06 43 32 43 35 40
## 7 S07 41 22 36 25 38
## 8 S08 38 21 31 20 16
## 9 S09 36 23 27 25 28
## 10 S10 26 31 31 32 36
## 11 S11 29 20 25 26 25
http://140.116.183.121/~sheu/dataM/Rdw/data/nobel_countries.txt
head(dta4_1 <- read.table(paste0("http://",IDPW,"140.116.183.121/~sheu/dataM/Rdw/data/nobel_countries.txt"), header = T))
## Country Year
## 1 France 2014
## 2 UK 1950
## 3 UK 2017
## 4 US 2016
## 5 Canada 2013
## 6 China 2012
head(dta4_2 <- read.table(paste0("http://",IDPW,"140.116.183.121/~sheu/dataM/Rdw/data/nobel_winners.txt"), header = T))
## Name Gender Year
## 1 Patrick Modiano Male 2014
## 2 Bertrand Russell Male 1950
## 3 Kazuo Ishiguro Male 2017
## 4 Bob Dylan Male 2016
## 5 Alice Munro Female 2013
## 6 Mo Yan Male 2012
#兩組資料中,以year比對,將match的留下
inner_join(dta4_1, dta4_2)
## Joining, by = "Year"
## Country Year Name Gender
## 1 France 2014 Patrick Modiano Male
## 2 UK 1950 Bertrand Russell Male
## 3 UK 2017 Kazuo Ishiguro Male
## 4 US 2016 Bob Dylan Male
## 5 Canada 2013 Alice Munro Female
## 6 China 2012 Mo Yan Male
#
#
#兩組資料中,比對後,留下與否以前者為主要參考依據
semi_join(dta4_1, dta4_2)
## Joining, by = "Year"
## Country Year
## 1 France 2014
## 2 UK 1950
## 3 UK 2017
## 4 US 2016
## 5 Canada 2013
## 6 China 2012
#
#
#兩組資料中,前者都留下,前後者共有的也留下
left_join(dta4_1, dta4_2)
## Joining, by = "Year"
## Country Year Name Gender
## 1 France 2014 Patrick Modiano Male
## 2 UK 1950 Bertrand Russell Male
## 3 UK 2017 Kazuo Ishiguro Male
## 4 US 2016 Bob Dylan Male
## 5 Canada 2013 Alice Munro Female
## 6 China 2012 Mo Yan Male
## 7 Russia 2015 <NA> <NA>
## 8 Sweden 2011 <NA> <NA>
#
#
#兩組資料中,XOR互斥,在前者中沒有出現在後者的留下
anti_join(dta4_1, dta4_2)
## Joining, by = "Year"
## Country Year
## 1 Russia 2015
## 2 Sweden 2011
#
#
#兩組資料中,全部都留下
full_join(dta4_1, dta4_2)
## Joining, by = "Year"
## Country Year Name Gender
## 1 France 2014 Patrick Modiano Male
## 2 UK 1950 Bertrand Russell Male
## 3 UK 2017 Kazuo Ishiguro Male
## 4 US 2016 Bob Dylan Male
## 5 Canada 2013 Alice Munro Female
## 6 China 2012 Mo Yan Male
## 7 Russia 2015 <NA> <NA>
## 8 Sweden 2011 <NA> <NA>
## 9 <NA> 1938 Pearl Buck Female