** DATA_605_Assignment_8_Thonn - Random Variables **
# install libraries if needed
#install.packages("permutations")
#library(permutations)
#install.packages('gtools')
#library(gtools)
Assignment-8: 11 and #14 on page 303 (chapter 7); 1 on page 320-321 (chapter 8)
** Problem-Ch.7 - #11 **
Answer 7-11:
# expected life for first bulbs to burn out
n <- 1000
num_bulbs <- 100
exp_time <- n/num_bulbs
exp_time
## [1] 10
# [1] 10
** Problem-Ch.7 - #14 **
Answer 7-14:
** Note: see example 7.4 in the text (Introduction to Probability (Grinstead,Snell)) **
\[f_Z(z) = (1/2)\lambda e^{-\lambda |z|}\] # Sum of Two Independent Exponential Random Variables # See example 7.4 in text page 292.
\[f_{X}(x) = f_{Y}(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \geq 0 \end{cases}\]
\[ fZ (z) =\int_{-\infty}^{\infty} f_{X}(z+y) f_{Y}(y) dy \]
\[ fZ (z) =\int_{z}^{0} \lambda e - \lambda (z+y) \lambda e - \lambda (y) dy \]
\[ fZ (z) =\int_{z}^{0} \lambda 2 e - \lambda |z| dy \]
\[f_Z(z) = \lambda 2 e^{-\lambda |z|}\]
\[f_{X}(x) = f_{Y}(x) = \begin{cases} (1/2) \lambda e^{-\lambda x} -\lambda |z| \end{cases}\]
** Problem-Ch.8 - 1 **
variance_X <- 100/3
sigma <- sqrt(variance_X)
sigma
## [1] 5.773503
# [1] 5.773503
eps <- 2
k <- eps/sigma
k
## [1] 0.3464102
# [1] 0.3464102
cheby <- pmin(1/k^2, 1)
cheby
## [1] 1
## [1] 1
variance_X <- 100/3
sigma <- sqrt(variance_X)
sigma
## [1] 5.773503
# [1] 5.773503
eps <- 5
k <- eps/sigma
k
## [1] 0.8660254
# [1] 0.8660254
cheby <- pmin(1/k^2, 1)
cheby
## [1] 1
# [1] 1
variance_X <- 100/3
sigma <- sqrt(variance_X)
sigma
## [1] 5.773503
# [1] 5.773503
eps <- 9
k <- eps/sigma
k
## [1] 1.558846
# [1] 1.558846
cheby <- 1/k^2
cheby
## [1] 0.4115226
# [1] 0.4115226
variance_X <- 100/3
sigma <- sqrt(variance_X)
sigma
## [1] 5.773503
# [1] 5.773503
eps <- 20
k <- eps/sigma
k
## [1] 3.464102
# [1] 3.464102
cheby <- 1/k^2
cheby
## [1] 0.08333333
# [1] 0.08333333
** END **