Monthly reported number of chickenpox, New York city, 1931-1972
library(forecast)
## Warning: package 'forecast' was built under R version 3.3.2
library(fpp)
## Loading required package: fma
## Warning: package 'fma' was built under R version 3.3.2
## Loading required package: expsmooth
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.3.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.3.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 3.3.2
library(xts)
## Warning: package 'xts' was built under R version 3.3.2
library(tseries)
chickenpox= read.csv("Desktop/Forcasting/monthly-reported-number-of-chick.csv")
str(chickenpox)
## 'data.frame': 498 obs. of 2 variables:
## $ Month : Factor w/ 498 levels "1931-01","1931-02",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Monthly.reported.number.of.chickenpox..New.York.city..1931.1972: int 956 927 1585 1536 1448 1272 303 68 62 116 ...
names(chickenpox)[2]<-c("reported.incidents")
head(chickenpox)
## Month reported.incidents
## 1 1931-01 956
## 2 1931-02 927
## 3 1931-03 1585
## 4 1931-04 1536
## 5 1931-05 1448
## 6 1931-06 1272
tail(chickenpox)
## Month reported.incidents
## 493 1972-01 320
## 494 1972-02 463
## 495 1972-03 690
## 496 1972-04 847
## 497 1972-05 1121
## 498 1972-06 1048
attach(chickenpox)
plot(chickenpox$reported.incidents,type="l",xlab="Month",ylab="Reported # of Chicken Pox in NYC")

Time series
pox.ts <- ts(chickenpox$reported.incidents,frequency=12,start=c(1931,1))
plot(pox.ts)

Decompose
decAdd<-decompose(pox.ts,type="additive")
decMult<-decompose(pox.ts,type="multiplicative")
#plot
plot(decAdd)

plot(decMult)

Error
error1<-na.omit(decAdd$random)
error2<-na.omit(decMult$random)
error1<-as.vector(error1)
error2<-as.vector(error2)
abserror1<-abs(error1)
abserror2<-abs(error2)
sqerror1<-error1^2
sqerror2<-error2^2
#Calculate Statisics
#mean error (bias)
me<-c(mean(error1),mean(error2))
#mean absolute deviation (variance)
mad<-c(mean(abserror1), mean(abserror2))
#mean square error (variance)
mse<-c(mean(sqerror1),mean(sqerror2))
#root mean square error (variance)
rmse<-sqrt(mse)
all<-c(me,mad,rmse)
all
## [1] 0.4211107 0.9958124 174.8686218 0.9958124 226.5805330 1.0393789