11 and 14 on page 303 of probability text
Since x1,x2…xn are independent exponential random variable … n= 100 \(λi=1/1000\)
so,\(E[Xi]=\frac{1}{λi}=1000\)
min\({X1,X2,...,X100}∼exponential(100∑i=1 λi)\)
and \(100 ∑ λi=100×\frac{1}{1000}=\frac{1}{10}\)
\(E(min) = \frac{1}{1/10} = 10\)
Ans = 10 hours
Show the probability density function for \(X1\) and \(X2\) using exponential distribution function.
\(f(X1) = \lambda e ^{λ - x1}\) \(f(X2) = \lambda e ^{λ - x2}\)
The joint density function of X1 and X2 is \(\lambda e ^(λ - x1) * \lambda ^2 e ^ (-λ(x1 + x2))\)
We can rearrage \(Z = X_1 - X_2\) to \(X_1 = Z + X_2\) and \(X_2 = X_1 - Z\)
If Z is negative, X2 is greater than -Z. If Z is positive, X2 is positive.
Negative Z is \[\int_{-z}^{\infty} \lambda^2 e^{-\lambda(z+2x_2)}dx = \frac{\lambda}{2}e^{\lambda z}\] Positive Z is \[\int_{-z}^{\infty} \lambda^2 e^{-\lambda(z+2x_2)}dx = \frac{\lambda}{2}e^{-\lambda z}\]
Chebyshev’s Inequality is \(P(|X - μ| ≥ kσ) ≤ 1/k^2\)
\(σ=√(100/3) = 10/C3\)
\(kσ = 2\) so \(k = 2/√100/3\) \(P(|X − 10| ≥ 2) = 1/k^2\) = 8.3333 Probability can’t be more than 1, so the upper bound is 1.
\(kσ = 5\) so \(k = 5/√100/3\) \(P(|X − 10| ≥ 5) = 1/k^2\) = 1.33333 Probability can’t be more than 1, so the upper bound is 1.
\(kσ = 9\) \(k = 9/√100/3\) \(P(|X − 10| ≥ 9) = 1/k^2\) = 0.4115 0.4115 is the upper bound.
\(kσ = 20\) \(k = 20/√100/3\) \(P(|X − 10| ≥ 20) = 1/k^2 = 0.083\) 0.083 is the upper bound.