if (!require("ggplot2")) install.packages("ggplot2"); library(ggplot2)
## Loading required package: ggplot2
if (!require("base")) install.packages("base"); library(base)
if (require(lavaan) == FALSE){install.packages("lavaan")};library(lavaan)
## Loading required package: lavaan
## This is lavaan 0.5-23.1097
## lavaan is BETA software! Please report any bugs.
dataFullItems0 = read.csv("~/Dropbox/Zhao/ePIRL16USA/FinalConfidenceFixedMissing.csv")
# View(dataFullItems0)
dataFullItems1=dataFullItems0[,-c(1:4)]
# View(dataFullItems1)
dataFullItems1$sex[dataFullItems1$sex == "0"] <-"Boy"
dataFullItems1$sex[dataFullItems1$sex == "1"] <-"Girl"
#In the original ePIRLS file, are coded as 0, and girls are coded 1.
dat = dataFullItems1
# View(dat)
attach(dat)
ggplot(dat, aes(x= con1, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender", labels=c("Boys", "Girls"))+
labs(x = "Confidence Scale: Item_1", y ="Frequency")+
ggtitle('Item_1: "I usually do well in reading."')+
theme_bw()
Conducting t-Test between males vs females: Item_1
item1Model <- lm(con1 ~ sex, data = dat)
summary(item1Model)
##
## Call:
## lm(formula = con1 ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5163 -0.4548 0.4837 0.5452 0.5452
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.45485 0.01729 199.766 <2e-16 ***
## sexGirl 0.06146 0.02428 2.531 0.0114 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.737 on 3685 degrees of freedom
## Multiple R-squared: 0.001736, Adjusted R-squared: 0.001465
## F-statistic: 6.408 on 1 and 3685 DF, p-value: 0.0114
Findings: There is a significant difference between boys and girls on item#1 at alpha .05 (p-value: 0.0114).
ggplot(dat, aes(x= con2, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender", labels = c("Boys", "Girls"))+
labs(x = "Confidence Scale: Item_2", y ="Frequency")+
ggtitle('Item_2: "Reading is easy for me."')+
theme_classic()
Conducting t-Test between males vs females: Item_2
item2Model <- lm(con2 ~ sex, data = dat)
summary(item2Model)
##
## Call:
## lm(formula = con2 ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4693 -0.4626 0.5307 0.5374 0.5374
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.462555 0.018665 185.508 <2e-16 ***
## sexGirl 0.006713 0.026202 0.256 0.798
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7954 on 3685 degrees of freedom
## Multiple R-squared: 1.781e-05, Adjusted R-squared: -0.0002536
## F-statistic: 0.06563 on 1 and 3685 DF, p-value: 0.7978
Findings: there is NO significant difference between meales and females on item#2 (p-value: 0.7978).
ggplot(dat, aes(x= con3r, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender", labels=c("Boys", "Girls"))+
labs(x = "Confidence Scale: Item_3", y ="Frequency")+
ggtitle('Item_3r: "I have trouble reading stories with difficult words."')+
theme_bw()
Conducting t-Test between males vs females: Item_3
item3rModel <- lm(con3r ~ sex, data = dat)
summary(item3rModel)
##
## Call:
## lm(formula = con3r ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6481 -0.6481 0.3519 1.3519 1.4420
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.64813 0.02613 101.339 <2e-16 ***
## sexGirl -0.09014 0.03668 -2.457 0.014 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.114 on 3685 degrees of freedom
## Multiple R-squared: 0.001636, Adjusted R-squared: 0.001365
## F-statistic: 6.038 on 1 and 3685 DF, p-value: 0.01405
Findings: There is a statistical significant difference between meales and females on item#3 at alpha .05 (p-value: 0.01405).
ggplot(dat, aes(x= con4r, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender", labels = c("Boys", "Girls"))+
labs(x = "Confidence Scale: Item_4r", y ="Frequency")+
ggtitle('Item_4r: "Reading is harder for me than for many of my classmates." ')+
theme_classic()
Conducting t-Test between males vs females: Item_4
item4rModel <- lm(con4r ~ sex, data = dat)
summary(item4rModel)
##
## Call:
## lm(formula = con4r ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2298 -1.1762 0.7702 0.8238 0.8238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.17621 0.02452 129.546 <2e-16 ***
## sexGirl 0.05361 0.03442 1.558 0.119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.045 on 3685 degrees of freedom
## Multiple R-squared: 0.000658, Adjusted R-squared: 0.0003868
## F-statistic: 2.426 on 1 and 3685 DF, p-value: 0.1194
Findings: There is NO significant difference between meales and females on item#4r (p-value: 0.1194).
ggplot(dat, aes(x= con5r, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender",labels=c("Boys", "Girls")) +
labs(x = "Confidence Scale: Item_5r", y ="Frequency")+
ggtitle('Item_5r: "Reading is harder for me than any other subject."')+
theme_linedraw()
Conducting t-Test between males vs females: Item_5
item5rModel <- lm(con5r ~ sex, data = dat)
summary(item5rModel)
##
## Call:
## lm(formula = con5r ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3330 -0.3330 0.6670 0.7478 0.7478
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.25220 0.02428 133.93 <2e-16 ***
## sexGirl 0.08077 0.03409 2.37 0.0179 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.035 on 3685 degrees of freedom
## Multiple R-squared: 0.001521, Adjusted R-squared: 0.00125
## F-statistic: 5.615 on 1 and 3685 DF, p-value: 0.01786
There is a significant difference between meales and females on item#5r at alpha .05 (p-value: 0.01786). .
ggplot(dat, aes(x= con6r, fill = sex))+
geom_density(alpha = .45)+
xlim(-.1,5)+
scale_fill_discrete("Gender",labels=c("Boys", "Girls")) +
labs(x = "Confidence Scale: Item_6r", y ="Frequency")+
ggtitle('Item_6r: "I am just not good at reading."')+
theme_classic()
Conducting t-Test between males vs females: Item_6
item6rModel <- lm(con6r ~ sex, data = dat)
summary(item6rModel)
##
## Call:
## lm(formula = con6r ~ sex, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.4564 -0.4367 0.5436 0.5633 0.5633
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.43667 0.02261 152.000 <2e-16 ***
## sexGirl 0.01977 0.03174 0.623 0.533
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9635 on 3685 degrees of freedom
## Multiple R-squared: 0.0001052, Adjusted R-squared: -0.0001661
## F-statistic: 0.3879 on 1 and 3685 DF, p-value: 0.5335
Findings: There is NO significant difference between meales and females on item#6r (p-value: 0.5335).
** End of Analyses **