Last updated 2014-10-26 15:02:47 using R version 3.1.1 (2014-07-10).
The purpose of this project is to demonstrate your ability to collect, work with, and clean a data set. The goal is to prepare tidy data that can be used for later analysis. You will be graded by your peers on a series of yes/no questions related to the project. You will be required to submit: 1) a tidy data set as described below, 2) a link to a Github repository with your script for performing the analysis, and 3) a code book that describes the variables, the data, and any transformations or work that you performed to clean up the data called CodeBook.md. You should also include a README.md in the repo with your scripts. This repo explains how all of the scripts work and how they are connected.
One of the most exciting areas in all of data science right now is wearable computing - see for example this article . Companies like Fitbit, Nike, and Jawbone Up are racing to develop the most advanced algorithms to attract new users. The data linked to from the course website represent data collected from the accelerometers from the Samsung Galaxy S smartphone. A full description is available at the site where the data was obtained:
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
Here are the data for the project:
https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip
You should create one R script called run_analysis.R that does the following.
1.Download the file and put the file in the data
folder
if(!file.exists("./data")){dir.create("./data")}
fileUrl <- "https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip"
download.file(fileUrl,destfile="./data/Dataset.zip",method="curl")
2.Unzip the file
unzip(zipfile="./data/Dataset.zip",exdir="./data")
3.unzipped files are in the folderUCI HAR Dataset
. Get the list of the files
path_rf <- file.path("./data" , "UCI HAR Dataset")
files<-list.files(path_rf, recursive=TRUE)
files
## [1] "activity_labels.txt"
## [2] "features_info.txt"
## [3] "features.txt"
## [4] "README.txt"
## [5] "test/Inertial Signals/body_acc_x_test.txt"
## [6] "test/Inertial Signals/body_acc_y_test.txt"
## [7] "test/Inertial Signals/body_acc_z_test.txt"
## [8] "test/Inertial Signals/body_gyro_x_test.txt"
## [9] "test/Inertial Signals/body_gyro_y_test.txt"
## [10] "test/Inertial Signals/body_gyro_z_test.txt"
## [11] "test/Inertial Signals/total_acc_x_test.txt"
## [12] "test/Inertial Signals/total_acc_y_test.txt"
## [13] "test/Inertial Signals/total_acc_z_test.txt"
## [14] "test/subject_test.txt"
## [15] "test/X_test.txt"
## [16] "test/y_test.txt"
## [17] "train/Inertial Signals/body_acc_x_train.txt"
## [18] "train/Inertial Signals/body_acc_y_train.txt"
## [19] "train/Inertial Signals/body_acc_z_train.txt"
## [20] "train/Inertial Signals/body_gyro_x_train.txt"
## [21] "train/Inertial Signals/body_gyro_y_train.txt"
## [22] "train/Inertial Signals/body_gyro_z_train.txt"
## [23] "train/Inertial Signals/total_acc_x_train.txt"
## [24] "train/Inertial Signals/total_acc_y_train.txt"
## [25] "train/Inertial Signals/total_acc_z_train.txt"
## [26] "train/subject_train.txt"
## [27] "train/X_train.txt"
## [28] "train/y_train.txt"
See the README.txt
file for the detailed information on the dataset. For the purposes of this project, the files in the Inertial Signals folders are not used. The files that will be used to load data are listed as follows:
the picture below comes from the picture post on forum by Community TA David Hood
.
Reference link: https://class.coursera.org/getdata-008/forum/thread?thread_id=24
From the picture and the related files, we can see:
Activity
consist of data from “Y_train.txt” and “Y_test.txt”Subject
consist of data from “subject_train.txt” and subject_test.txt"Features
consist of data from “X_train.txt” and “X_test.txt”Features
come from “features.txt”Activity
come from “activity_labels.txt”So we will use Activity
, Subject
and Features
as part of descriptive variable names for data in data frame.
2.Read data from the files into the variables
Read the Activity files
dataActivityTest <- read.table(file.path(path_rf, "test" , "Y_test.txt" ),header = FALSE)
dataActivityTrain <- read.table(file.path(path_rf, "train", "Y_train.txt"),header = FALSE)
Read the Subject files
dataSubjectTrain <- read.table(file.path(path_rf, "train", "subject_train.txt"),header = FALSE)
dataSubjectTest <- read.table(file.path(path_rf, "test" , "subject_test.txt"),header = FALSE)
Read Fearures files
dataFeaturesTest <- read.table(file.path(path_rf, "test" , "X_test.txt" ),header = FALSE)
dataFeaturesTrain <- read.table(file.path(path_rf, "train", "X_train.txt"),header = FALSE)
str(dataActivityTest)
## 'data.frame': 2947 obs. of 1 variable:
## $ V1: int 5 5 5 5 5 5 5 5 5 5 ...
str(dataActivityTrain)
## 'data.frame': 7352 obs. of 1 variable:
## $ V1: int 5 5 5 5 5 5 5 5 5 5 ...
str(dataSubjectTrain)
## 'data.frame': 7352 obs. of 1 variable:
## $ V1: int 1 1 1 1 1 1 1 1 1 1 ...
str(dataSubjectTest)
## 'data.frame': 2947 obs. of 1 variable:
## $ V1: int 2 2 2 2 2 2 2 2 2 2 ...
str(dataFeaturesTest)
## 'data.frame': 2947 obs. of 561 variables:
## $ V1 : num 0.257 0.286 0.275 0.27 0.275 ...
## $ V2 : num -0.0233 -0.0132 -0.0261 -0.0326 -0.0278 ...
## $ V3 : num -0.0147 -0.1191 -0.1182 -0.1175 -0.1295 ...
## $ V4 : num -0.938 -0.975 -0.994 -0.995 -0.994 ...
## $ V5 : num -0.92 -0.967 -0.97 -0.973 -0.967 ...
## $ V6 : num -0.668 -0.945 -0.963 -0.967 -0.978 ...
## $ V7 : num -0.953 -0.987 -0.994 -0.995 -0.994 ...
## $ V8 : num -0.925 -0.968 -0.971 -0.974 -0.966 ...
## $ V9 : num -0.674 -0.946 -0.963 -0.969 -0.977 ...
## $ V10 : num -0.894 -0.894 -0.939 -0.939 -0.939 ...
## $ V11 : num -0.555 -0.555 -0.569 -0.569 -0.561 ...
## $ V12 : num -0.466 -0.806 -0.799 -0.799 -0.826 ...
## $ V13 : num 0.717 0.768 0.848 0.848 0.849 ...
## $ V14 : num 0.636 0.684 0.668 0.668 0.671 ...
## $ V15 : num 0.789 0.797 0.822 0.822 0.83 ...
## $ V16 : num -0.878 -0.969 -0.977 -0.974 -0.975 ...
## $ V17 : num -0.998 -1 -1 -1 -1 ...
## $ V18 : num -0.998 -1 -1 -0.999 -0.999 ...
## $ V19 : num -0.934 -0.998 -0.999 -0.999 -0.999 ...
## $ V20 : num -0.976 -0.994 -0.993 -0.995 -0.993 ...
## $ V21 : num -0.95 -0.974 -0.974 -0.979 -0.967 ...
## $ V22 : num -0.83 -0.951 -0.965 -0.97 -0.976 ...
## $ V23 : num -0.168 -0.302 -0.618 -0.75 -0.591 ...
## $ V24 : num -0.379 -0.348 -0.695 -0.899 -0.74 ...
## $ V25 : num 0.246 -0.405 -0.537 -0.554 -0.799 ...
## $ V26 : num 0.521 0.507 0.242 0.175 0.116 ...
## $ V27 : num -0.4878 -0.1565 -0.115 -0.0513 -0.0289 ...
## $ V28 : num 0.4823 0.0407 0.0327 0.0342 -0.0328 ...
## $ V29 : num -0.0455 0.273 0.1924 0.1536 0.2943 ...
## $ V30 : num 0.21196 0.19757 -0.01194 0.03077 0.00063 ...
## $ V31 : num -0.1349 -0.1946 -0.0634 -0.1293 -0.0453 ...
## $ V32 : num 0.131 0.411 0.471 0.446 0.168 ...
## $ V33 : num -0.0142 -0.3405 -0.5074 -0.4195 -0.0682 ...
## $ V34 : num -0.106 0.0776 0.1885 0.2715 0.0744 ...
## $ V35 : num 0.0735 -0.084 -0.2316 -0.2258 0.0271 ...
## $ V36 : num -0.1715 0.0353 0.6321 0.4164 -0.1459 ...
## $ V37 : num 0.0401 -0.0101 -0.5507 -0.2864 -0.0502 ...
## $ V38 : num 0.077 -0.105 0.3057 -0.0638 0.2352 ...
## $ V39 : num -0.491 -0.429 -0.324 -0.167 0.29 ...
## $ V40 : num -0.709 0.399 0.28 0.545 0.458 ...
## $ V41 : num 0.936 0.927 0.93 0.929 0.927 ...
## $ V42 : num -0.283 -0.289 -0.288 -0.293 -0.303 ...
## $ V43 : num 0.115 0.153 0.146 0.143 0.138 ...
## $ V44 : num -0.925 -0.989 -0.996 -0.993 -0.996 ...
## $ V45 : num -0.937 -0.984 -0.988 -0.97 -0.971 ...
## $ V46 : num -0.564 -0.965 -0.982 -0.992 -0.968 ...
## $ V47 : num -0.93 -0.989 -0.996 -0.993 -0.996 ...
## $ V48 : num -0.938 -0.983 -0.989 -0.971 -0.971 ...
## $ V49 : num -0.606 -0.965 -0.98 -0.993 -0.969 ...
## $ V50 : num 0.906 0.856 0.856 0.856 0.854 ...
## $ V51 : num -0.279 -0.305 -0.305 -0.305 -0.313 ...
## $ V52 : num 0.153 0.153 0.139 0.136 0.134 ...
## $ V53 : num 0.944 0.944 0.949 0.947 0.946 ...
## $ V54 : num -0.262 -0.262 -0.262 -0.273 -0.279 ...
## $ V55 : num -0.0762 0.149 0.145 0.1421 0.1309 ...
## $ V56 : num -0.0178 0.0577 0.0406 0.0461 0.0554 ...
## $ V57 : num 0.829 0.806 0.812 0.809 0.804 ...
## $ V58 : num -0.865 -0.858 -0.86 -0.854 -0.843 ...
## $ V59 : num -0.968 -0.957 -0.961 -0.963 -0.965 ...
## $ V60 : num -0.95 -0.988 -0.996 -0.992 -0.996 ...
## $ V61 : num -0.946 -0.982 -0.99 -0.973 -0.972 ...
## $ V62 : num -0.76 -0.971 -0.979 -0.996 -0.969 ...
## $ V63 : num -0.425 -0.729 -0.823 -0.823 -0.83 ...
## $ V64 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ V65 : num 0.219 -0.465 -0.53 -0.7 -0.302 ...
## $ V66 : num -0.43 -0.51 -0.295 -0.343 -0.482 ...
## $ V67 : num 0.431 0.525 0.305 0.359 0.539 ...
## $ V68 : num -0.432 -0.54 -0.315 -0.375 -0.596 ...
## $ V69 : num 0.433 0.554 0.326 0.392 0.655 ...
## $ V70 : num -0.795 -0.746 -0.232 -0.233 -0.493 ...
## $ V71 : num 0.781 0.733 0.169 0.176 0.463 ...
## $ V72 : num -0.78 -0.737 -0.155 -0.169 -0.465 ...
## $ V73 : num 0.785 0.749 0.164 0.185 0.483 ...
## $ V74 : num -0.984 -0.845 -0.429 -0.297 -0.536 ...
## $ V75 : num 0.987 0.869 0.44 0.304 0.544 ...
## $ V76 : num -0.989 -0.893 -0.451 -0.311 -0.553 ...
## $ V77 : num 0.988 0.913 0.458 0.315 0.559 ...
## $ V78 : num 0.981 0.945 0.548 0.986 0.998 ...
## $ V79 : num -0.996 -0.911 -0.335 0.653 0.916 ...
## $ V80 : num -0.96 -0.739 0.59 0.747 0.929 ...
## $ V81 : num 0.072 0.0702 0.0694 0.0749 0.0784 ...
## $ V82 : num 0.04575 -0.01788 -0.00491 0.03227 0.02228 ...
## $ V83 : num -0.10604 -0.00172 -0.01367 0.01214 0.00275 ...
## $ V84 : num -0.907 -0.949 -0.991 -0.991 -0.992 ...
## $ V85 : num -0.938 -0.973 -0.971 -0.973 -0.979 ...
## $ V86 : num -0.936 -0.978 -0.973 -0.976 -0.987 ...
## $ V87 : num -0.916 -0.969 -0.991 -0.99 -0.991 ...
## $ V88 : num -0.937 -0.974 -0.973 -0.973 -0.977 ...
## $ V89 : num -0.949 -0.979 -0.975 -0.978 -0.985 ...
## $ V90 : num -0.903 -0.915 -0.992 -0.992 -0.994 ...
## $ V91 : num -0.95 -0.981 -0.975 -0.975 -0.986 ...
## $ V92 : num -0.891 -0.978 -0.962 -0.962 -0.986 ...
## $ V93 : num 0.898 0.898 0.994 0.994 0.994 ...
## $ V94 : num 0.95 0.968 0.976 0.976 0.98 ...
## $ V95 : num 0.946 0.966 0.966 0.97 0.985 ...
## $ V96 : num -0.931 -0.974 -0.982 -0.983 -0.987 ...
## $ V97 : num -0.995 -0.998 -1 -1 -1 ...
## $ V98 : num -0.997 -0.999 -0.999 -0.999 -1 ...
## $ V99 : num -0.997 -0.999 -0.999 -0.999 -1 ...
## [list output truncated]
str(dataFeaturesTrain)
## 'data.frame': 7352 obs. of 561 variables:
## $ V1 : num 0.289 0.278 0.28 0.279 0.277 ...
## $ V2 : num -0.0203 -0.0164 -0.0195 -0.0262 -0.0166 ...
## $ V3 : num -0.133 -0.124 -0.113 -0.123 -0.115 ...
## $ V4 : num -0.995 -0.998 -0.995 -0.996 -0.998 ...
## $ V5 : num -0.983 -0.975 -0.967 -0.983 -0.981 ...
## $ V6 : num -0.914 -0.96 -0.979 -0.991 -0.99 ...
## $ V7 : num -0.995 -0.999 -0.997 -0.997 -0.998 ...
## $ V8 : num -0.983 -0.975 -0.964 -0.983 -0.98 ...
## $ V9 : num -0.924 -0.958 -0.977 -0.989 -0.99 ...
## $ V10 : num -0.935 -0.943 -0.939 -0.939 -0.942 ...
## $ V11 : num -0.567 -0.558 -0.558 -0.576 -0.569 ...
## $ V12 : num -0.744 -0.818 -0.818 -0.83 -0.825 ...
## $ V13 : num 0.853 0.849 0.844 0.844 0.849 ...
## $ V14 : num 0.686 0.686 0.682 0.682 0.683 ...
## $ V15 : num 0.814 0.823 0.839 0.838 0.838 ...
## $ V16 : num -0.966 -0.982 -0.983 -0.986 -0.993 ...
## $ V17 : num -1 -1 -1 -1 -1 ...
## $ V18 : num -1 -1 -1 -1 -1 ...
## $ V19 : num -0.995 -0.998 -0.999 -1 -1 ...
## $ V20 : num -0.994 -0.999 -0.997 -0.997 -0.998 ...
## $ V21 : num -0.988 -0.978 -0.965 -0.984 -0.981 ...
## $ V22 : num -0.943 -0.948 -0.975 -0.986 -0.991 ...
## $ V23 : num -0.408 -0.715 -0.592 -0.627 -0.787 ...
## $ V24 : num -0.679 -0.501 -0.486 -0.851 -0.559 ...
## $ V25 : num -0.602 -0.571 -0.571 -0.912 -0.761 ...
## $ V26 : num 0.9293 0.6116 0.273 0.0614 0.3133 ...
## $ V27 : num -0.853 -0.3295 -0.0863 0.0748 -0.1312 ...
## $ V28 : num 0.36 0.284 0.337 0.198 0.191 ...
## $ V29 : num -0.0585 0.2846 -0.1647 -0.2643 0.0869 ...
## $ V30 : num 0.2569 0.1157 0.0172 0.0725 0.2576 ...
## $ V31 : num -0.2248 -0.091 -0.0745 -0.1553 -0.2725 ...
## $ V32 : num 0.264 0.294 0.342 0.323 0.435 ...
## $ V33 : num -0.0952 -0.2812 -0.3326 -0.1708 -0.3154 ...
## $ V34 : num 0.279 0.086 0.239 0.295 0.44 ...
## $ V35 : num -0.4651 -0.0222 -0.1362 -0.3061 -0.2691 ...
## $ V36 : num 0.4919 -0.0167 0.1739 0.4821 0.1794 ...
## $ V37 : num -0.191 -0.221 -0.299 -0.47 -0.089 ...
## $ V38 : num 0.3763 -0.0134 -0.1247 -0.3057 -0.1558 ...
## $ V39 : num 0.4351 -0.0727 -0.1811 -0.3627 -0.1898 ...
## $ V40 : num 0.661 0.579 0.609 0.507 0.599 ...
## $ V41 : num 0.963 0.967 0.967 0.968 0.968 ...
## $ V42 : num -0.141 -0.142 -0.142 -0.144 -0.149 ...
## $ V43 : num 0.1154 0.1094 0.1019 0.0999 0.0945 ...
## $ V44 : num -0.985 -0.997 -1 -0.997 -0.998 ...
## $ V45 : num -0.982 -0.989 -0.993 -0.981 -0.988 ...
## $ V46 : num -0.878 -0.932 -0.993 -0.978 -0.979 ...
## $ V47 : num -0.985 -0.998 -1 -0.996 -0.998 ...
## $ V48 : num -0.984 -0.99 -0.993 -0.981 -0.989 ...
## $ V49 : num -0.895 -0.933 -0.993 -0.978 -0.979 ...
## $ V50 : num 0.892 0.892 0.892 0.894 0.894 ...
## $ V51 : num -0.161 -0.161 -0.164 -0.164 -0.167 ...
## $ V52 : num 0.1247 0.1226 0.0946 0.0934 0.0917 ...
## $ V53 : num 0.977 0.985 0.987 0.987 0.987 ...
## $ V54 : num -0.123 -0.115 -0.115 -0.121 -0.122 ...
## $ V55 : num 0.0565 0.1028 0.1028 0.0958 0.0941 ...
## $ V56 : num -0.375 -0.383 -0.402 -0.4 -0.4 ...
## $ V57 : num 0.899 0.908 0.909 0.911 0.912 ...
## $ V58 : num -0.971 -0.971 -0.97 -0.969 -0.967 ...
## $ V59 : num -0.976 -0.979 -0.982 -0.982 -0.984 ...
## $ V60 : num -0.984 -0.999 -1 -0.996 -0.998 ...
## $ V61 : num -0.989 -0.99 -0.992 -0.981 -0.991 ...
## $ V62 : num -0.918 -0.942 -0.993 -0.98 -0.98 ...
## $ V63 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ V64 : num -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ V65 : num 0.114 -0.21 -0.927 -0.596 -0.617 ...
## $ V66 : num -0.59042 -0.41006 0.00223 -0.06493 -0.25727 ...
## $ V67 : num 0.5911 0.4139 0.0275 0.0754 0.2689 ...
## $ V68 : num -0.5918 -0.4176 -0.0567 -0.0858 -0.2807 ...
## $ V69 : num 0.5925 0.4213 0.0855 0.0962 0.2926 ...
## $ V70 : num -0.745 -0.196 -0.329 -0.295 -0.167 ...
## $ V71 : num 0.7209 0.1253 0.2705 0.2283 0.0899 ...
## $ V72 : num -0.7124 -0.1056 -0.2545 -0.2063 -0.0663 ...
## $ V73 : num 0.7113 0.1091 0.2576 0.2048 0.0671 ...
## $ V74 : num -0.995 -0.834 -0.705 -0.385 -0.237 ...
## $ V75 : num 0.996 0.834 0.714 0.386 0.239 ...
## $ V76 : num -0.996 -0.834 -0.723 -0.387 -0.241 ...
## $ V77 : num 0.992 0.83 0.729 0.385 0.241 ...
## $ V78 : num 0.57 -0.831 -0.181 -0.991 -0.408 ...
## $ V79 : num 0.439 -0.866 0.338 -0.969 -0.185 ...
## $ V80 : num 0.987 0.974 0.643 0.984 0.965 ...
## $ V81 : num 0.078 0.074 0.0736 0.0773 0.0734 ...
## $ V82 : num 0.005 0.00577 0.0031 0.02006 0.01912 ...
## $ V83 : num -0.06783 0.02938 -0.00905 -0.00986 0.01678 ...
## $ V84 : num -0.994 -0.996 -0.991 -0.993 -0.996 ...
## $ V85 : num -0.988 -0.981 -0.981 -0.988 -0.988 ...
## $ V86 : num -0.994 -0.992 -0.99 -0.993 -0.992 ...
## $ V87 : num -0.994 -0.996 -0.991 -0.994 -0.997 ...
## $ V88 : num -0.986 -0.979 -0.979 -0.986 -0.987 ...
## $ V89 : num -0.993 -0.991 -0.987 -0.991 -0.991 ...
## $ V90 : num -0.985 -0.995 -0.987 -0.987 -0.997 ...
## $ V91 : num -0.992 -0.979 -0.979 -0.992 -0.992 ...
## $ V92 : num -0.993 -0.992 -0.992 -0.99 -0.99 ...
## $ V93 : num 0.99 0.993 0.988 0.988 0.994 ...
## $ V94 : num 0.992 0.992 0.992 0.993 0.993 ...
## $ V95 : num 0.991 0.989 0.989 0.993 0.986 ...
## $ V96 : num -0.994 -0.991 -0.988 -0.993 -0.994 ...
## $ V97 : num -1 -1 -1 -1 -1 ...
## $ V98 : num -1 -1 -1 -1 -1 ...
## $ V99 : num -1 -1 -1 -1 -1 ...
## [list output truncated]
1.Concatenate the data tables by rows
dataSubject <- rbind(dataSubjectTrain, dataSubjectTest)
dataActivity<- rbind(dataActivityTrain, dataActivityTest)
dataFeatures<- rbind(dataFeaturesTrain, dataFeaturesTest)
2.set names to variables
names(dataSubject)<-c("subject")
names(dataActivity)<- c("activity")
dataFeaturesNames <- read.table(file.path(path_rf, "features.txt"),head=FALSE)
names(dataFeatures)<- dataFeaturesNames$V2
3.Merge columns to get the data frame Data
for all data
dataCombine <- cbind(dataSubject, dataActivity)
Data <- cbind(dataFeatures, dataCombine)
i.e taken Names of Features with “mean()” or “std()”
subdataFeaturesNames<-dataFeaturesNames$V2[grep("mean\\(\\)|std\\(\\)", dataFeaturesNames$V2)]
Data
by seleted names of FeaturesselectedNames<-c(as.character(subdataFeaturesNames), "subject", "activity" )
Data<-subset(Data,select=selectedNames)
Data
str(Data)
## 'data.frame': 10299 obs. of 68 variables:
## $ tBodyAcc-mean()-X : num 0.289 0.278 0.28 0.279 0.277 ...
## $ tBodyAcc-mean()-Y : num -0.0203 -0.0164 -0.0195 -0.0262 -0.0166 ...
## $ tBodyAcc-mean()-Z : num -0.133 -0.124 -0.113 -0.123 -0.115 ...
## $ tBodyAcc-std()-X : num -0.995 -0.998 -0.995 -0.996 -0.998 ...
## $ tBodyAcc-std()-Y : num -0.983 -0.975 -0.967 -0.983 -0.981 ...
## $ tBodyAcc-std()-Z : num -0.914 -0.96 -0.979 -0.991 -0.99 ...
## $ tGravityAcc-mean()-X : num 0.963 0.967 0.967 0.968 0.968 ...
## $ tGravityAcc-mean()-Y : num -0.141 -0.142 -0.142 -0.144 -0.149 ...
## $ tGravityAcc-mean()-Z : num 0.1154 0.1094 0.1019 0.0999 0.0945 ...
## $ tGravityAcc-std()-X : num -0.985 -0.997 -1 -0.997 -0.998 ...
## $ tGravityAcc-std()-Y : num -0.982 -0.989 -0.993 -0.981 -0.988 ...
## $ tGravityAcc-std()-Z : num -0.878 -0.932 -0.993 -0.978 -0.979 ...
## $ tBodyAccJerk-mean()-X : num 0.078 0.074 0.0736 0.0773 0.0734 ...
## $ tBodyAccJerk-mean()-Y : num 0.005 0.00577 0.0031 0.02006 0.01912 ...
## $ tBodyAccJerk-mean()-Z : num -0.06783 0.02938 -0.00905 -0.00986 0.01678 ...
## $ tBodyAccJerk-std()-X : num -0.994 -0.996 -0.991 -0.993 -0.996 ...
## $ tBodyAccJerk-std()-Y : num -0.988 -0.981 -0.981 -0.988 -0.988 ...
## $ tBodyAccJerk-std()-Z : num -0.994 -0.992 -0.99 -0.993 -0.992 ...
## $ tBodyGyro-mean()-X : num -0.0061 -0.0161 -0.0317 -0.0434 -0.034 ...
## $ tBodyGyro-mean()-Y : num -0.0314 -0.0839 -0.1023 -0.0914 -0.0747 ...
## $ tBodyGyro-mean()-Z : num 0.1077 0.1006 0.0961 0.0855 0.0774 ...
## $ tBodyGyro-std()-X : num -0.985 -0.983 -0.976 -0.991 -0.985 ...
## $ tBodyGyro-std()-Y : num -0.977 -0.989 -0.994 -0.992 -0.992 ...
## $ tBodyGyro-std()-Z : num -0.992 -0.989 -0.986 -0.988 -0.987 ...
## $ tBodyGyroJerk-mean()-X : num -0.0992 -0.1105 -0.1085 -0.0912 -0.0908 ...
## $ tBodyGyroJerk-mean()-Y : num -0.0555 -0.0448 -0.0424 -0.0363 -0.0376 ...
## $ tBodyGyroJerk-mean()-Z : num -0.062 -0.0592 -0.0558 -0.0605 -0.0583 ...
## $ tBodyGyroJerk-std()-X : num -0.992 -0.99 -0.988 -0.991 -0.991 ...
## $ tBodyGyroJerk-std()-Y : num -0.993 -0.997 -0.996 -0.997 -0.996 ...
## $ tBodyGyroJerk-std()-Z : num -0.992 -0.994 -0.992 -0.993 -0.995 ...
## $ tBodyAccMag-mean() : num -0.959 -0.979 -0.984 -0.987 -0.993 ...
## $ tBodyAccMag-std() : num -0.951 -0.976 -0.988 -0.986 -0.991 ...
## $ tGravityAccMag-mean() : num -0.959 -0.979 -0.984 -0.987 -0.993 ...
## $ tGravityAccMag-std() : num -0.951 -0.976 -0.988 -0.986 -0.991 ...
## $ tBodyAccJerkMag-mean() : num -0.993 -0.991 -0.989 -0.993 -0.993 ...
## $ tBodyAccJerkMag-std() : num -0.994 -0.992 -0.99 -0.993 -0.996 ...
## $ tBodyGyroMag-mean() : num -0.969 -0.981 -0.976 -0.982 -0.985 ...
## $ tBodyGyroMag-std() : num -0.964 -0.984 -0.986 -0.987 -0.989 ...
## $ tBodyGyroJerkMag-mean() : num -0.994 -0.995 -0.993 -0.996 -0.996 ...
## $ tBodyGyroJerkMag-std() : num -0.991 -0.996 -0.995 -0.995 -0.995 ...
## $ fBodyAcc-mean()-X : num -0.995 -0.997 -0.994 -0.995 -0.997 ...
## $ fBodyAcc-mean()-Y : num -0.983 -0.977 -0.973 -0.984 -0.982 ...
## $ fBodyAcc-mean()-Z : num -0.939 -0.974 -0.983 -0.991 -0.988 ...
## $ fBodyAcc-std()-X : num -0.995 -0.999 -0.996 -0.996 -0.999 ...
## $ fBodyAcc-std()-Y : num -0.983 -0.975 -0.966 -0.983 -0.98 ...
## $ fBodyAcc-std()-Z : num -0.906 -0.955 -0.977 -0.99 -0.992 ...
## $ fBodyAccJerk-mean()-X : num -0.992 -0.995 -0.991 -0.994 -0.996 ...
## $ fBodyAccJerk-mean()-Y : num -0.987 -0.981 -0.982 -0.989 -0.989 ...
## $ fBodyAccJerk-mean()-Z : num -0.99 -0.99 -0.988 -0.991 -0.991 ...
## $ fBodyAccJerk-std()-X : num -0.996 -0.997 -0.991 -0.991 -0.997 ...
## $ fBodyAccJerk-std()-Y : num -0.991 -0.982 -0.981 -0.987 -0.989 ...
## $ fBodyAccJerk-std()-Z : num -0.997 -0.993 -0.99 -0.994 -0.993 ...
## $ fBodyGyro-mean()-X : num -0.987 -0.977 -0.975 -0.987 -0.982 ...
## $ fBodyGyro-mean()-Y : num -0.982 -0.993 -0.994 -0.994 -0.993 ...
## $ fBodyGyro-mean()-Z : num -0.99 -0.99 -0.987 -0.987 -0.989 ...
## $ fBodyGyro-std()-X : num -0.985 -0.985 -0.977 -0.993 -0.986 ...
## $ fBodyGyro-std()-Y : num -0.974 -0.987 -0.993 -0.992 -0.992 ...
## $ fBodyGyro-std()-Z : num -0.994 -0.99 -0.987 -0.989 -0.988 ...
## $ fBodyAccMag-mean() : num -0.952 -0.981 -0.988 -0.988 -0.994 ...
## $ fBodyAccMag-std() : num -0.956 -0.976 -0.989 -0.987 -0.99 ...
## $ fBodyBodyAccJerkMag-mean() : num -0.994 -0.99 -0.989 -0.993 -0.996 ...
## $ fBodyBodyAccJerkMag-std() : num -0.994 -0.992 -0.991 -0.992 -0.994 ...
## $ fBodyBodyGyroMag-mean() : num -0.98 -0.988 -0.989 -0.989 -0.991 ...
## $ fBodyBodyGyroMag-std() : num -0.961 -0.983 -0.986 -0.988 -0.989 ...
## $ fBodyBodyGyroJerkMag-mean(): num -0.992 -0.996 -0.995 -0.995 -0.995 ...
## $ fBodyBodyGyroJerkMag-std() : num -0.991 -0.996 -0.995 -0.995 -0.995 ...
## $ subject : int 1 1 1 1 1 1 1 1 1 1 ...
## $ activity : int 5 5 5 5 5 5 5 5 5 5 ...
1.Read descriptive activity names from “activity_labels.txt”
activityLabels <- read.table(file.path(path_rf, "activity_labels.txt"),header = FALSE)
facorize Variale activity
in the data frame Data
using descriptive activity names
check
head(Data$activity,30)
## [1] STANDING STANDING STANDING STANDING STANDING STANDING STANDING
## [8] STANDING STANDING STANDING STANDING STANDING STANDING STANDING
## [15] STANDING STANDING STANDING STANDING STANDING STANDING STANDING
## [22] STANDING STANDING STANDING STANDING STANDING STANDING SITTING
## [29] SITTING SITTING
## 6 Levels: WALKING WALKING_UPSTAIRS WALKING_DOWNSTAIRS ... LAYING
In the former part, variables activity and subject and names of the activities have been labelled using descriptive names.In this part, Names of Feteatures will labelled using descriptive variable names.
names(Data)<-gsub("^t", "time", names(Data))
names(Data)<-gsub("^f", "frequency", names(Data))
names(Data)<-gsub("Acc", "Accelerometer", names(Data))
names(Data)<-gsub("Gyro", "Gyroscope", names(Data))
names(Data)<-gsub("Mag", "Magnitude", names(Data))
names(Data)<-gsub("BodyBody", "Body", names(Data))
check
names(Data)
## [1] "timeBodyAccelerometer-mean()-X"
## [2] "timeBodyAccelerometer-mean()-Y"
## [3] "timeBodyAccelerometer-mean()-Z"
## [4] "timeBodyAccelerometer-std()-X"
## [5] "timeBodyAccelerometer-std()-Y"
## [6] "timeBodyAccelerometer-std()-Z"
## [7] "timeGravityAccelerometer-mean()-X"
## [8] "timeGravityAccelerometer-mean()-Y"
## [9] "timeGravityAccelerometer-mean()-Z"
## [10] "timeGravityAccelerometer-std()-X"
## [11] "timeGravityAccelerometer-std()-Y"
## [12] "timeGravityAccelerometer-std()-Z"
## [13] "timeBodyAccelerometerJerk-mean()-X"
## [14] "timeBodyAccelerometerJerk-mean()-Y"
## [15] "timeBodyAccelerometerJerk-mean()-Z"
## [16] "timeBodyAccelerometerJerk-std()-X"
## [17] "timeBodyAccelerometerJerk-std()-Y"
## [18] "timeBodyAccelerometerJerk-std()-Z"
## [19] "timeBodyGyroscope-mean()-X"
## [20] "timeBodyGyroscope-mean()-Y"
## [21] "timeBodyGyroscope-mean()-Z"
## [22] "timeBodyGyroscope-std()-X"
## [23] "timeBodyGyroscope-std()-Y"
## [24] "timeBodyGyroscope-std()-Z"
## [25] "timeBodyGyroscopeJerk-mean()-X"
## [26] "timeBodyGyroscopeJerk-mean()-Y"
## [27] "timeBodyGyroscopeJerk-mean()-Z"
## [28] "timeBodyGyroscopeJerk-std()-X"
## [29] "timeBodyGyroscopeJerk-std()-Y"
## [30] "timeBodyGyroscopeJerk-std()-Z"
## [31] "timeBodyAccelerometerMagnitude-mean()"
## [32] "timeBodyAccelerometerMagnitude-std()"
## [33] "timeGravityAccelerometerMagnitude-mean()"
## [34] "timeGravityAccelerometerMagnitude-std()"
## [35] "timeBodyAccelerometerJerkMagnitude-mean()"
## [36] "timeBodyAccelerometerJerkMagnitude-std()"
## [37] "timeBodyGyroscopeMagnitude-mean()"
## [38] "timeBodyGyroscopeMagnitude-std()"
## [39] "timeBodyGyroscopeJerkMagnitude-mean()"
## [40] "timeBodyGyroscopeJerkMagnitude-std()"
## [41] "frequencyBodyAccelerometer-mean()-X"
## [42] "frequencyBodyAccelerometer-mean()-Y"
## [43] "frequencyBodyAccelerometer-mean()-Z"
## [44] "frequencyBodyAccelerometer-std()-X"
## [45] "frequencyBodyAccelerometer-std()-Y"
## [46] "frequencyBodyAccelerometer-std()-Z"
## [47] "frequencyBodyAccelerometerJerk-mean()-X"
## [48] "frequencyBodyAccelerometerJerk-mean()-Y"
## [49] "frequencyBodyAccelerometerJerk-mean()-Z"
## [50] "frequencyBodyAccelerometerJerk-std()-X"
## [51] "frequencyBodyAccelerometerJerk-std()-Y"
## [52] "frequencyBodyAccelerometerJerk-std()-Z"
## [53] "frequencyBodyGyroscope-mean()-X"
## [54] "frequencyBodyGyroscope-mean()-Y"
## [55] "frequencyBodyGyroscope-mean()-Z"
## [56] "frequencyBodyGyroscope-std()-X"
## [57] "frequencyBodyGyroscope-std()-Y"
## [58] "frequencyBodyGyroscope-std()-Z"
## [59] "frequencyBodyAccelerometerMagnitude-mean()"
## [60] "frequencyBodyAccelerometerMagnitude-std()"
## [61] "frequencyBodyAccelerometerJerkMagnitude-mean()"
## [62] "frequencyBodyAccelerometerJerkMagnitude-std()"
## [63] "frequencyBodyGyroscopeMagnitude-mean()"
## [64] "frequencyBodyGyroscopeMagnitude-std()"
## [65] "frequencyBodyGyroscopeJerkMagnitude-mean()"
## [66] "frequencyBodyGyroscopeJerkMagnitude-std()"
## [67] "subject"
## [68] "activity"
In this part,a second, independent tidy data set will be created with the average of each variable for each activity and each subject based on the data set in step 4.
library(plyr);
Data2<-aggregate(. ~subject + activity, Data, mean)
Data2<-Data2[order(Data2$subject,Data2$activity),]
write.table(Data2, file = "tidydata.txt",row.name=FALSE)
library(knitr)
knit2html("codebook.Rmd");
##
##
## processing file: codebook.Rmd
##
|
| | 0%
|
|...................... | 33%
## inline R code fragments
##
##
|
|........................................... | 67%
## label: unnamed-chunk-21
##
|
|.................................................................| 100%
## ordinary text without R code
## output file: codebook.md