Startups Funds usage In india Analysis

Interested in the Indian startup ecosystem just like me? Wanted to know what type of startups are getting funded in the last few years? Wanted to know who are the important investors? Wanted to know the hot fields that get a lot of funding these days? This dataset is a chance to explore the Indian start up scene. Deep dive into funding data and derive insights into the future!

Content This dataset has funding information of the Indian startups from January 2015 to August 2017. It includes columns with the date funded, the city the startup is based out of, the names of the funders, and the amount invested (in USD).

For more information on the values of individual fields, check out the Column Metadata.

Acknowledgements Thanks to trak.in who are generous enough to share the data publicly for free.

Inspiration Possible questions which could be answered are:

How does the funding ecosystem change with time? Do cities play a major role in funding? Which industries are favored by investors for funding? Who are the important investors in the Indian Ecosystem? How much funds does startups generally get in India?:

#The startup fund Anlaysis in india 2017
library("knitr")
library("devtools")
startup <- read.csv("C:\\Users\\ksantoram\\Desktop\\rdataset\\startup_funding.csv")
View(startup)
summary(startup)
##       SNo                 Date         StartupName  
##  Min.   :   0.0   02/02/2015:  11   Swiggy   :   7  
##  1st Qu.: 592.8   08/07/2015:  11   UrbanClap:   6  
##  Median :1185.5   30/11/2016:  11   Jugnoo   :   5  
##  Mean   :1185.5   04/10/2016:  10   Medinfi  :   5  
##  3rd Qu.:1778.2   01/06/2015:   9   NoBroker :   5  
##  Max.   :2371.0   04/5/2016 :   9   Paytm    :   5  
##                   (Other)   :2311   (Other)  :2339  
##           IndustryVertical                   SubVertical      CityLocation
##  Consumer Internet:772                             : 936   Bangalore:627  
##  Technology       :313     Online Pharmacy         :   9   Mumbai   :446  
##                   :171     Food Delivery Platform  :   8   New Delhi:381  
##  eCommerce        :171     Online lending platform :   5   Gurgaon  :240  
##  ECommerce        : 53     Online Learning Platform:   4            :179  
##  Healthcare       : 30     Data Analytics platform :   3   Pune     : 84  
##  (Other)          :862     (Other)                 :1407   (Other)  :415  
##                   InvestorsName         InvestmentType    AmountInUSD  
##  Undisclosed Investors   :  33   Seed Funding  :1271            : 847  
##  Undisclosed investors   :  27   Private Equity:1066   1,000,000: 130  
##  Indian Angel Network    :  24   SeedFunding   :  30   500,000  :  91  
##  Ratan Tata              :  24                 :   1   100,000  :  55  
##  Kalaari Capital         :  16   Crowd funding :   1   2,000,000:  55  
##  Group of Angel Investors:  15   Crowd Funding :   1   3,000,000:  50  
##  (Other)                 :2233   (Other)       :   2   (Other)  :1144  
##          Remarks    
##              :1953  
##  Series A    : 177  
##  Series B    :  64  
##  Pre-Series A:  37  
##  Series C    :  28  
##  Series D    :  11  
##  (Other)     : 102
##Firstly we would visualize the length and breadth of our dataset
dim(startup)
## [1] 2372   10
summary(startup)
##       SNo                 Date         StartupName  
##  Min.   :   0.0   02/02/2015:  11   Swiggy   :   7  
##  1st Qu.: 592.8   08/07/2015:  11   UrbanClap:   6  
##  Median :1185.5   30/11/2016:  11   Jugnoo   :   5  
##  Mean   :1185.5   04/10/2016:  10   Medinfi  :   5  
##  3rd Qu.:1778.2   01/06/2015:   9   NoBroker :   5  
##  Max.   :2371.0   04/5/2016 :   9   Paytm    :   5  
##                   (Other)   :2311   (Other)  :2339  
##           IndustryVertical                   SubVertical      CityLocation
##  Consumer Internet:772                             : 936   Bangalore:627  
##  Technology       :313     Online Pharmacy         :   9   Mumbai   :446  
##                   :171     Food Delivery Platform  :   8   New Delhi:381  
##  eCommerce        :171     Online lending platform :   5   Gurgaon  :240  
##  ECommerce        : 53     Online Learning Platform:   4            :179  
##  Healthcare       : 30     Data Analytics platform :   3   Pune     : 84  
##  (Other)          :862     (Other)                 :1407   (Other)  :415  
##                   InvestorsName         InvestmentType    AmountInUSD  
##  Undisclosed Investors   :  33   Seed Funding  :1271            : 847  
##  Undisclosed investors   :  27   Private Equity:1066   1,000,000: 130  
##  Indian Angel Network    :  24   SeedFunding   :  30   500,000  :  91  
##  Ratan Tata              :  24                 :   1   100,000  :  55  
##  Kalaari Capital         :  16   Crowd funding :   1   2,000,000:  55  
##  Group of Angel Investors:  15   Crowd Funding :   1   3,000,000:  50  
##  (Other)                 :2233   (Other)       :   2   (Other)  :1144  
##          Remarks    
##              :1953  
##  Series A    : 177  
##  Series B    :  64  
##  Pre-Series A:  37  
##  Series C    :  28  
##  Series D    :  11  
##  (Other)     : 102
#Important Information
#Our data has various blank cells in the Industry Vertical Coloumn, Subvertical Coloumn, City Location, Amount in USD. Thus while plotting indivudual data of each data set we would ignore the incomplete Data set or empty cell. Also as there are upto 2000 empty cells in remarks section with a lot of varied information we would ignore analysing each and every remark

#Cleaning the data by removing the , characters to convert it into pure numeric forms from the AMount coloumn and filling the null cells with NA value will help us efficient analysis of the data
startup$Remarks <- NULL
startup[startup == ""] <- NA
startup$AmountInUSD <- as.numeric(gsub(",","",startup$AmountInUSD))  
##Let us Describe statistics of our significant variables.
library(psych)
##Now looking up at the major Industrial sectors that have been funded. Firstly we would in general like to see the amount of Investment. Thus calling out the describe function
cleanstartup <- startup[complete.cases(startup$AmountInUSD), ]
describe(cleanstartup$AmountInUSD)
##    vars    n     mean       sd  median trimmed     mad   min     max
## X1    1 1525 12031073 64031175 1070000 3335938 1378818 16000 1.4e+09
##         range  skew kurtosis      se
## X1 1399984000 15.94   309.36 1639670
##Creating contingency plots. Here we would clear the entire row in the presence of an empty cell in the row which would help in clear analysis. We would still be left with significant amount of data to analyse the trends
Cleanstartup <- startup[complete.cases(startup), ]
View(Cleanstartup)
dim(Cleanstartup)
## [1] 869   9
##Thus we have 869 data rows to check that have complete data at hand.
summary(Cleanstartup)
##       SNo               Date            StartupName 
##  Min.   :   0   30/11/2016: 10   Swiggy       :  4  
##  1st Qu.: 336   04/5/2016 :  9   Byju’s     :  3  
##  Median : 690   04/10/2016:  7   Capital Float:  3  
##  Mean   : 697   04/04/2017:  6   Flipkart     :  3  
##  3rd Qu.:1042   13/02/2017:  6   Fynd         :  3  
##  Max.   :1431   17/01/2017:  6   Koovs        :  3  
##                 (Other)   :825   (Other)      :850  
##           IndustryVertical                   SubVertical     CityLocation
##  Consumer Internet:459     Food Delivery Platform  :  4   Bangalore:267  
##  Technology       :189     Online lending platform :  4   Mumbai   :181  
##  eCommerce        :112     Online Pharmacy         :  4   New Delhi:130  
##  ECommerce        : 32     ECommerce Marketplace   :  3   Gurgaon  : 97  
##  Logistics        : 16     Online Learning Platform:  3   Pune     : 37  
##  Education        : 15     Cab Aggregation App     :  2   Hyderabad: 35  
##  (Other)          : 46     (Other)                 :849   (Other)  :122  
##                InvestorsName        InvestmentType  AmountInUSD       
##  Undisclosed Investors: 17   Private Equity:476    Min.   :1.800e+04  
##  Undisclosed investors: 16   Seed Funding  :392    1st Qu.:3.500e+05  
##  undisclosed investors: 11   Debt Funding  :  1    Median :1.000e+06  
##  Kalaari Capital      :  9                 :  0    Mean   :1.113e+07  
##  Brand Capital        :  7   Crowd funding :  0    3rd Qu.:5.000e+06  
##  Indian Angel Network :  7   Crowd Funding :  0    Max.   :1.400e+09  
##  (Other)              :802   (Other)       :  0
Cleanstartup1 <- Cleanstartup
str(Cleanstartup1)
## 'data.frame':    869 obs. of  9 variables:
##  $ SNo             : int  0 3 4 5 6 7 8 9 10 13 ...
##  $ Date            : Factor w/ 701 levels "01/03/2017","01/04/2017",..: 12 39 39 9 60 83 108 108 108 157 ...
##  $ StartupName     : Factor w/ 2001 levels "#Fame","121Policy",..: 1734 1965 291 161 455 431 914 1123 1713 292 ...
##  $ IndustryVertical: Factor w/ 744 levels "","360-degree view creating platform",..: 701 101 101 101 701 160 160 160 101 101 ...
##  $ SubVertical     : Factor w/ 1365 levels "","3D printed experimental Human Liver tissue creator",..: 1119 294 491 1087 353 937 944 75 540 285 ...
##  $ CityLocation    : Factor w/ 72 levels "","Agra","Ahmedabad",..: 5 41 26 5 3 22 5 51 41 5 ...
##  $ InvestorsName   : Factor w/ 1886 levels "","1Crowd","1Crowd (through crowd funding)",..: 815 896 1088 1336 748 219 834 764 247 717 ...
##  $ InvestmentType  : Factor w/ 8 levels "","Crowd funding",..: 5 7 7 7 5 5 5 5 5 7 ...
##  $ AmountInUSD     : num  1.3e+06 5.0e+05 8.5e+05 1.0e+06 2.6e+06 2.0e+07 8.5e+06 1.2e+07 1.0e+06 1.0e+06 ...
Cleanstartup1$CityLocation <- as.character(Cleanstartup1$CityLocation)
Cleanstartup1$CityLocation[Cleanstartup1$CityLocation != "Bangalore" & Cleanstartup1$CityLocation != "Mumbai" & Cleanstartup1$CityLocation != "New Delhi" & Cleanstartup1$CityLocation != "Gurgaon" & Cleanstartup1$CityLocation != "Pune" & Cleanstartup1$CityLocation != "Hyderabad"] <- "Others"


View(Cleanstartup1)
table(Cleanstartup1$CityLocation)
## 
## Bangalore   Gurgaon Hyderabad    Mumbai New Delhi    Others      Pune 
##       267        97        35       181       130       122        37
#Now Bracketing the Vertical Industrial Sector
startup2 <- Cleanstartup1
startup2$IndustryVertical <- as.character(startup2$IndustryVertical)
#clean code
startup2$IndustryVertical[startup2$IndustryVertical != "Consumer Internet" & startup2$IndustryVertical != "Technology" & startup2$IndustryVertical != "ECommerce" & startup2$IndustryVertical != "Logistics" & startup2$IndustryVertical != "Education" & startup2$IndustryVertical != "Healthcare"] <- "OtherSectors"
View(startup2)
table(startup2$CityLocation)
## 
## Bangalore   Gurgaon Hyderabad    Mumbai New Delhi    Others      Pune 
##       267        97        35       181       130       122        37
table(startup2$IndustryVertical)
## 
## Consumer Internet         ECommerce         Education        Healthcare 
##               459                32                15                14 
##         Logistics      OtherSectors        Technology 
##                16               144               189
dim(startup2)
## [1] 869   9
#We would also clean the type of Investment;Simply converting from Factor to character is sufficient
startup2$InvestmentType <- as.character(startup2$InvestmentType)
#So Finally we have our dataset CleanData3.df which is a subset of Data1.df after cleaning and bracketing major variables that were significantly less for us to invest our time to analyse them. Thus moving ahead with our CleanData3.df dataset
table(cleanstartup$Date)
## 
##  01/03/2017  01/04/2017  01/05/2015  01/05/2017  01/06/2015  01/06/2017 
##           2           1           2           2           7           0 
##  01/07/2015  01/07/2016  01/07/2017  01/08/2015  01/08/2016  01/08/2017 
##           3           1           1           2           3           1 
##  01/09/2015   01/1/2016  01/10/2015  01/11/2016  01/12/2015  01/12/2016 
##           3           0           1           1           4           3 
##   01/2/2016   01/3/2016   01/4/2016   01/5/2016   01/6/2016   01/7/2016 
##           0           0           1           2           0           0 
##   01/8/2016   01/9/2016  02/01/2015  02/01/2017  02/02/2015  02/02/2017 
##           2           1           2           1          10           0 
##  02/03/2015  02/03/2017  02/05/2017  02/06/2015  02/06/2017  02/07/2015 
##           2           4           3           2           0           3 
##  02/07/2016  02/08/2016  02/08/2017  02/09/2015  02/10/2015  02/11/2015 
##           1           2           2           2           1           2 
##  02/11/2016  02/12/2015  02/12/2016   02/2/2016   02/3/2016   02/5/2016 
##           2           1           2           5           2           0 
##   02/6/2016  03/01/2017  03/02/2015  03/02/2017  03/03/2015  03/03/2017 
##           2           1           2           0           1           3 
##  03/04/2015  03/04/2017  03/05/2017  03/06/2015  03/07/2015  03/07/2017 
##           1           2           2           5           2           1 
##  03/08/2015  03/08/2016  03/09/2015  03/10/2015  03/10/2016  03/11/2015 
##           3           2           2           1           3           6 
##  03/11/2016  03/12/2015   03/2/2016   03/3/2016   03/5/2016   03/6/2016 
##           2           2           4           2           3           2 
##  04/01/2017  04/02/2016  04/03/2017  04/04/2015  04/04/2017  04/05/2015 
##           0           1           1           2           6           3 
##  04/05/2017  04/06/2015  04/07/2015  04/07/2016  04/07/2017  04/08/2015 
##           0           4           1           4           1           1 
##  04/08/2016  04/09/2015   04/1/2016  04/10/2016  04/11/2015  04/11/2016 
##           1           3           1           7           2           2 
##  04/12/2015   04/3/2016   04/4/2016   04/5/2016   04/9/2016  05/01/2015 
##           3           4           1           9           0           3 
##  05/01/2017  05/02/2015  05/02/2016  05/03/2015  05/04/2017  05/05/2015 
##           0           2           4           2           1           4 
##  05/05/2017  05/06/2015  05/06/2017  05/07/2015  05/07/2016  05/07/2017 
##           1           3           1           0           3           3 
##  05/08/2015  05/08/2016   05/1/2016  05/10/2015  05/10/2016  05/11/2015 
##           6           0           3           4           1           2 
##  05/11/2016  05/12/2016   05/4/2016   05/5/2016   05/9/2016  06/01/2015 
##           2           1           0           1           0           4 
##  06/01/2016  06/01/2017  06/02/2015  06/02/2016  06/02/2017  06/03/2015 
##           5           1           2           1           1           1 
##  06/03/2017  06/04/2015  06/04/2017  06/05/2015  06/06/2017  06/07/2015 
##           3           1           2           2           3           1 
##  06/07/2016  06/07/2017  06/08/2015  06/08/2016  06/10/2015  06/10/2016 
##           3           0           4           1           5           2 
##  06/11/2015  06/12/2016   06/4/2016   06/5/2016   06/6/2016   06/9/2016 
##           5           1           4           1           1           3 
##  07/01/2015  07/01/2016  07/01/2017  07/02/2017  07/03/2017  07/04/2015 
##           3           3           1           2           5           3 
##  07/04/2017  07/05/2015  07/06/2016  07/06/2017  07/07/2015  07/07/2016 
##           1           3           5           2           2           2 
##  07/07/2017  07/08/2015  07/09/2015  07/10/2015  07/10/2016  07/11/2016 
##           1           2           4           2           3           2 
##  07/12/2015  07/12/2016   07/3/2016   07/4/2016   07/5/2016   07/9/2016 
##           4           2           5           0           1           4 
##  08/01/2016  08/02/2016  08/02/2017  08/03/2017  08/04/2015  08/04/2016 
##           3           3           4           3           3           1 
##  08/04/2017  08/05/2015  08/05/2017  08/06/2015  08/06/2016  08/06/2017 
##           1           3           4           1           5           4 
##  08/07/2015  08/07/2016  08/08/2016  08/09/2015  08/10/2015  08/12/2015 
##           9           1           3           1           4           1 
##  08/12/2016   08/3/2016   08/9/2016  09/01/2015  09/01/2016  09/01/2017 
##           2           3           2           1           0           1 
##  09/02/2015  09/02/2016  09/02/2017  09/03/2015  09/03/2017  09/04/2015 
##           2           0           2           2           2           4 
##  09/05/2017  09/06/2015  09/06/2016  09/06/2017  09/08/2016  09/10/2015 
##           1           4           1           2           0           5 
##  09/11/2015  09/11/2016  09/12/2015  09/12/2016   09/3/2016   09/5/2016 
##           6           2           3           3           4           3 
##   09/7/2015   09/9/2016  10/01/2017  10/02/2015  10/02/2016  10/02/2017 
##           2           1           5           0           3           1 
##  10/03/2015  10/03/2017  10/04/2015  10/04/2017  10/05/2017  10/06/2015 
##           0           2           1           2           3           1 
##  10/06/2016  10/07/2017  10/08/2015  10/08/2016  10/09/2015  10/10/2016 
##           1           1           7           2           3           1 
##  10/11/2015  10/11/2016  10/12/2015   10/3/2016   10/5/2016   10/7/2015 
##           1           1           7           3           5           3 
##   10/9/2016  11/01/2016  11/01/2017  11/02/2015  11/03/2015  11/04/2015 
##           2           3           0           2           4           1 
##  11/04/2016  11/04/2017  11/05/2017  11/06/2015  11/06/2016  11/07/2016 
##           3           2           1           2           0           3 
##  11/07/2017  11/08/2015  11/08/2016  11/09/2015  11/10/2016  11/11/2015 
##           2           5           3           2           2           2 
##  11/11/2016  11/12/2015   11/3/2016   11/5/2016  12/01/2015  12/01/2016 
##           0           3           0           2           1           3 
##  12/01/2017  12/02/2015  12/02/2016  12/03/2015  12/04/2016  12/04/2017 
##           2           2           4           1           1           4 
##  12/05.2015  12/05/2015  12/05/2017  12/06/2015  12/06/2017  12/07/2016 
##           1           2           3           1           5           1 
##  12/07/2017  12/08/2015  12/08/2016  12/09/2015  12/10/2015  12/10/2016 
##           1           4           4           1           2           0 
##  12/11/2015  12/12/2016   12/5/2016   12/9/2016  13/01/2015  13/01/2016 
##           1           4           3           4           0           4 
##  13/01/2017  13/02/2015  13/02/2017  13/03/2015  13/04.2015  13/04/2015 
##           2           2           6           2           1           4 
##  13/04/2016  13/04/2017  13/05/2015  13/06/2016  13/06/2017  13/07/2016 
##           4           1           0           2           1           4 
##  13/08/2015  13/10/2015  13/10/2016  13/11/2015  13/12/2016   13/5/2016 
##           3           2           2           0           2           2 
##   13/7/2015   13/9/2016  14/01/2015  14/01/2016  14/01/2017  14/02/2017 
##           2           1           1           1           1           2 
##  14/03/2015  14/03/2017  14/04/2015  14/04/2016  14/04/2017  14/05/2015 
##           2           0           1           1           1           2 
##  14/06/2016  14/06/2017  14/07/2016  14/07/2017  14/08/2015  14/09/2015 
##           3           2           2           2           2           4 
##  14/10/2015  14/10/2016  14/11/2016  14/12/2015  14/12/2016   14/3/2016 
##           2           3           2           3           3           2 
##   14/7/2015   14/9/2016  15/01.2015  15/01/2016  15/02/2016  15/02/2017 
##           5           1           1           1           5           2 
##  15/03/2017  15/04/2015  15/04/2016  15/04/2017  15/05/2015  15/05/2017 
##           2           3           4           1           1           1 
##  15/06/2015  15/06/2016  15/06/2017  15/07/2016  15/08/2016  15/09/2015 
##           2           1           1           4           0           4 
##  15/10/2015  15/10/2016  15/11/2016  15/12/2015  15/12/2016   15/3/2016 
##           0           3           2           1           4           3 
##   15/7/2015   15/9/2016  16/01/2015  16/01/2016  16/01/2017  16/02/2015 
##           3           3           1           0           2           2 
##  16/02/2016  16/02/2017  16/03/2015  16/03/2017  16/04/2015  16/05/2017 
##           3           2           4           3           2           2 
##  16/06/2015  16/06/2016  16/06/2017  16/08/2016  16/09/2015  16/10/2015 
##           1           3           3           5           3           0 
##  16/11/2015  16/11/2016  16/12/2015  16/12/2016   16/3/2016   16/5/2016 
##           3           1           3           2           2           1 
##   16/7/2015   16/9/2016  17/01/2017  17/02/2015  17/02/2016  17/02/2017 
##           1           2           6           0           3           4 
##  17/03/2015  17/03/2017  17/04/2015  17/04/2017  17/05/2017  17/06/2015 
##           0           0           1           4           2           1 
##  17/06/2016  17/07/2017  17/08/2015  17/08/2016  17/09/2015  17/10/2015 
##           3           2           3           2           2           1 
##  17/10/2016  17/11/2015  17/11/2016  17/12/2015   17/3/2016   17/5/2016 
##           2           6           2           2           4           0 
##   17/7/2015  18/01/2015  18/01/2016  18/01/2017  18/02/2015  18/02/2016 
##           2           1           1           2           1           3 
##  18/02/2017  18/03/2015  18/04/2015  18/04/2016  18/04/2017  18/05/2015 
##           1           2           0           1           3           0 
##  18/05/2017  18/06/2015  18/07/2016  18/07/2017  18/08/2015  18/08/2016 
##           2           2           3           0           4           0 
##  18/09/2015  18/10/2016  18/11/2015  18/11/2016  18/12/2015   18/3/2016 
##           4           2           3           1           2           1 
##   18/5/2016  19/01/2015  19/01/2016  19/01/2017  19/02/2016  19/03/2015 
##           4           7           5           1           2           2 
##  19/04/2016  19/04/2017  19/05/2015  19/05/2017  19/06/2015  19/06/2017 
##           3           1           7           1           2           2 
##  19/07/2016  19/07/2017  19/08/2015  19/08/2016  19/09/2015  19/10/2015 
##           4           2           2           2           0           2 
##  19/10/2016  19/11/2015  19/12/2016   19/3/2016   19/5/2016   19/9/2016 
##           3           3           1           1           3           2 
##   2/01/2017  20/01/2015  20/01/2016  20/01/2017  20/02/2015  20/02/2017 
##           0           2           4           0           2           1 
##  20/03/2015  20/04/2015  20/04/2016  20/04/2017  20/05/2015  20/05/2017 
##           3           4           1           1           1           0 
##  20/06/2015  20/06/2016  20/06/2017  20/07/2016  20/07/2017  20/08/2015 
##           2           0           2           2           1           3 
##  20/10/2015  20/10/2016  20/11/2015  20/12/2016   20/5/2016   20/7/2015 
##           2           0           4           2           1           2 
##   20/9/2016  21/01/2015  21/01/2016  21/02/2015  21/02/2017  21/03/2015 
##           1           2           4           1           1           0 
##  21/03/2017  21/04/2016  21/04/2017  21/05/2015  21/06/2015  21/06/2016 
##           3           0           1           1           1           5 
##  21/06/2017  21/07/2016  21/07/2017  21/08/2015  21/09/2015  21/10/2015 
##           4           2           1           1           3           4 
##  21/10/2016  21/11/2015  21/11/2016  21/12/2015  21/12/2016   21/3/2016 
##           1           2           2           3           2           1 
##   21/7/2015   21/9/2016 22/01//2015  22/01/2015  22/01/2016  22/01/2017 
##           1           4           1           2           5           1 
##  22/02/2016  22/02/2017  22/03/2017  22/04/2015  22/04/2016  22/05/2015 
##           5           1           1           2           2           2 
##  22/05/2017  22/06/2015  22/06/2016  22/06/2017  22/08/2016  22/09/2015 
##           2           2           1           3           1           5 
##  22/11/2016  22/12/2015  22/12/2016   22/3/2016   22/7/2015   22/9/2016 
##           4           4           2           4           2           4 
##  23/01/2017  23/02/2015  23/02/2016  23/02/2017  23/03/2015  23/03/2017 
##           1           4           1           1           1           2 
##  23/04/2015  23/05/2017  23/06/2015  23/06/2016  23/06/2017  23/08/2016 
##           5           2           3           2           2           2 
##  23/09/2015  23/10/2015  23/10/2016  23/11/2015  23/11/2016  23/12/2015 
##           3           4           0           2           3           2 
##  23/12/2016   23/3/2016   23/5/2016   23/7/2015   23/9/2016  24/01/2015 
##           1           4           1           7           1           1 
##  24/01/2017  24/02/2015  24/02/2016  24/02/2017  24/03/2015  24/03/2017 
##           3           1           4           0           2           2 
##  24/04/2015  24/04/2017  24/05/2017  24/06/2015  24/06/2016  24/08/2015 
##           1           3           1           3           5           2 
##  24/08/2016  24/09/2015  24/10/2016  24/11/2015  24/11/2016  24/12/2015 
##           6           4           2           2           1           2 
##   24/3/2016   24/5/2016   24/7/2015  25/01/2015  25/01/2016  25/01/2017 
##           1           1           1           1           2           3 
##  25/02/2015  25/02/2016  25/03/2015  25/04/2016  25/04/2017  25/05/2015 
##           4           3           4           2           2           1 
##  25/05/2017  25/06/2015  25/07/2017  25/08/2015  25/08/2016  25/09/2015 
##           1           2           2           4           2           0 
##  25/10/2016  25/11/2015  25/11/2016   25/5/2016   25/7/2015  26/01/2017 
##           3           3           0           2           1           2 
##  26/02/2015  26/02/2016  26/03/2015  26/04/2016  26/04/2017  26/05/2015 
##           1           2           2           3           4           3 
##  26/05/2017  26/06/2015  26/06/2017  26/07/2017  26/08/2015  26/08/2016 
##           0           2           3           2           3           3 
##  26/10/2015  26/10/2016  26/11/2015  26/11/2016  26/12/2016   26/5/2016 
##           5           2           3           0           2           2 
##   26/9/2016  27/01/2015  27/01/2016  27/02/2015  27/02/2017  27/03/2015 
##           0           1           2           2           2           2 
##  27/03/2017  27/04/2015  27/04/2016  27/04/2017  27/05/2015  27/06/2016 
##           0           3           2           2           3           3 
##  27/06/2017  27/07/2017  27/08/2015  27/10/2015  27/10/2016  27/11/2015 
##           2           1           0           3           3           1 
##  27/12/2016   27/5/2016   27/7/2015   27/9/2016  28/01/2015  28/01/2016 
##           1           0           1           1           1           2 
##  28/02/2017  28/03/2015  28/03/2017  28/04/2015  28/04/2016  28/04/2017 
##           2           3           2           3           2           1 
##  28/05/2015  28/06/2016  28/06/2017  28/07/2017  28/08/2015  28/09/2015 
##           2           4           2           1           2           1 
##  28/10/2015  28/10/2016  28/11/2015  28/11/2016  28/12/2015  28/12/2016 
##           2           0           0           2           2           0 
##   28/3/2016   28/7/2015   28/9/2016  29/01/2015  29/01/2016  29/02/2016 
##           1           4           4           2           5           1 
##  29/03/2017  29/04/2015  29/04/2016  29/04/2017  29/05/2017  29/06/2015 
##           4           6           2           0           1           3 
##  29/06/2016  29/06/2017  29/08/2015  29/08/2016  29/09/2015  29/10/2015 
##           3           1           0           4           4           1 
##  29/10/2016  29/11/2016  29/12/2015  29/12/2016   29/3/2016   29/7/2015 
##           3           1           2           1           4           4 
##   29/9/2016  30/01/2015  30/01/2016  30/01/2017  30/03/2015  30/03/2017 
##           2           1           0           4           2           0 
##  30/05/2015  30/05/2017  30/06/2015  30/06/2016  30/06/2017  30/09/2015 
##           1           2           2           3           2           3 
##  30/10/2015  30/10/2016  30/11/2015  30/11/2016  30/12/2015  30/12/2016 
##           5           1           3          10           0           0 
##   30/3/2016   30/5/2016   30/7/2015   30/8/2016   30/9/2016  31/01/2015 
##           1           1           5           5           1           1 
##  31/01/2017  31/03/2015  31/03/2017  31/05/2017  31/08/2015  31/10/2015 
##           1           3           4           2           2           1 
##  31/10/2016   31/3/2016   31/5/2016   31/7/2015   31/8/2016 
##           1           0           3           3           1
table(startup2$IndustryVertical)
## 
## Consumer Internet         ECommerce         Education        Healthcare 
##               459                32                15                14 
##         Logistics      OtherSectors        Technology 
##                16               144               189
table(startup2$CityLocation)
## 
## Bangalore   Gurgaon Hyderabad    Mumbai New Delhi    Others      Pune 
##       267        97        35       181       130       122        37
#The major Industrial sectors acquiring funding by numbers
table(startup2$InvestmentType)
## 
##   Debt Funding Private Equity   Seed Funding 
##              1            476            392
#The funded startups location
sum(startup2$AmountInUSD)
## [1] 9674311608
boxplot(startup2$AmountInUSD, horizontal = TRUE, xlab = "Amount in USD", main = "Startup Investment plot")

boxplot(startup2$AmountInUSD ~ startup2$Date, horizontal = TRUE, xlab= "Amount of Investment in USD", ylab = "Year", main = "Year Wise Investment Analysis")

boxplot(startup2$AmountInUSD ~ startup2$IndustryVertical,horizontal = FALSE, ylab= "Amount of Investment in USD", xlab = "Industry Sector", main = "Industrial Sector Wise Investment Analysis", boxwex = 0.6, names = c("Con Int", "Ecomm", "Edu", "HealthCare", "Logist.", "Others", "Tech"))

mytable <- xtabs(startup2$AmountInUSD ~ startup2$IndustryVertical)
plot(mytable, ylab = "AMount of Investment", xlab = "Industry Sector")

boxplot(startup2$AmountInUSD ~ startup2$CityLocation,horizontal = FALSE, ylab= "Amount of Investment in USD", xlab = "City", main = "Startup citiwise location Wise Investment Analysis", boxwex = 0.6, names = c("Bang", "Gurgaon", "Hyd", "Mum", "N. Delhi", "Others", "Pune"))

boxplot(startup2$AmountInUSD ~ startup2$InvestmentType,horizontal = FALSE, ylab= "Amount of Investment in USD", xlab = "Investment Type", main = "Investment type vs Investment Analysis")

#mytable <- xtabs(startup2$AmountInUSD ~ statup2$InvestmentType)
plot(mytable, ylab = "AMount of Investment", xlab = "Type of Investment")

b = barplot(head(sort(table(startup2$CityLocation), decreasing=T),20),col=rainbow(10,0.5), las=2, ylim=c(0,750), xlab="City Name", ylab="No Of StartUps")
text(b,head(sort(table(startup2$CityLocation), decreasing=T),20),head(sort(table(startup2$CityLocation), decreasing=T),20),srt=90, pos=4)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.