This presentation aims at showing the features of R. The roadmap of the session is:
- Why R
- What Can We Do with R
This presentation aims at showing the features of R. The roadmap of the session is:
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
summary(cars)
## speed dist ## Min. : 4.0 Min. : 2.00 ## 1st Qu.:12.0 1st Qu.: 26.00 ## Median :15.0 Median : 36.00 ## Mean :15.4 Mean : 42.98 ## 3rd Qu.:19.0 3rd Qu.: 56.00 ## Max. :25.0 Max. :120.00
We can write math equation
\[ J(\theta ) = -\frac{1}{m}\sum [y^{(i)}log(p^{(i)})+(1-y^{(i)})log(1-p^{(i)})] \]
## X mpg cyl disp hp drat wt qsec vs am gear carb ## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## # A tibble: 3 x 4 ## admit gre gpa rank ## <dbl> <dbl> <dbl> <dbl> ## 1 0 380 3.61 3 ## 2 1 660 3.67 3 ## 3 1 800 4.00 1
## # A tibble: 71 x 2 ## weight feed ## <dbl> <chr> ## 1 179 horsebean ## 2 160 horsebean ## 3 136 horsebean ## 4 227 horsebean ## 5 217 horsebean ## 6 168 horsebean ## 7 108 horsebean ## 8 124 horsebean ## 9 143 horsebean ## 10 140 horsebean ## # ... with 61 more rows
## The Greatest Showman is rated 7.9/10 ## from Internet Movie Database and released in 20 Dec 2017
| ID | name | age | occupation |
|---|---|---|---|
| 1 | John | 21 | Student |
| 2 | Jack | 28 | Employee |
| ID | price | quantity |
|---|---|---|
| 1 | 1 | 1 |
| 3 | 4 | 5 |
| 5 | 10 | 5 |
items %>% # Merge left_join(users) %>% # Create group group_by(name) %>% # Create average basket mutate(average_basket = crossprod(price, Quantity)/sum(Quantity))%>% # Summarize summarise(average_basket = mean(average_basket),mean_price= mean(price), count = n()) %>% # ascending sort arrange(mean_price)
## # A tibble: 5 x 4 ## name average_basket mean_price count ## <fctr> <dbl> <dbl> <int> ## 1 Jack 3.000000 3.000000 1 ## 2 John 4.333333 3.500000 2 ## 3 AMELIA 7.000000 7.000000 1 ## 4 ELLIS 7.222222 7.600000 5 ## 5 SOPHIE 8.625000 7.666667 3
| Dependent variable: | |||
| rating | high.rating | ||
| OLS | probit | ||
| (1) | (2) | (3) | |
| complaints | 0.692*** | 0.682*** | |
| (0.149) | (0.129) | ||
| privileges | -0.104 | -0.103 | |
| (0.135) | (0.129) | ||
| learning | 0.249 | 0.238* | 0.164*** |
| (0.160) | (0.139) | (0.053) | |
| raises | -0.033 | ||
| (0.202) | |||
| critical | 0.015 | -0.001 | |
| (0.147) | (0.044) | ||
| advance | -0.062 | ||
| (0.042) | |||
| Constant | 11.011 | 11.258 | -7.476** |
| (11.704) | (7.318) | (3.570) | |
| Observations | 30 | 30 | 30 |
| R2 | 0.715 | 0.715 | |
| Adjusted R2 | 0.656 | 0.682 | |
| Log Likelihood | -9.087 | ||
| Akaike Inf. Crit. | 26.175 | ||
| Residual Std. Error | 7.139 (df = 24) | 6.863 (df = 26) | |
| F Statistic | 12.063*** (df = 5; 24) | 21.743*** (df = 3; 26) | |
| Note: | p<0.1; p<0.05; p<0.01 | ||