Juan Pablo Edwards Molina


## [[1]]
## [1] TRUE
## 
## [[2]]
## [1] TRUE
## 
## [[3]]
## [1] TRUE
## 
## [[4]]
## [1] TRUE
## 
## [[5]]
## [1] TRUE
## 
## [[6]]
## [1] TRUE
## 
## [[7]]
## [1] TRUE
## 
## [[8]]
## [1] TRUE
## 
## [[9]]
## [1] TRUE
## 
## [[10]]
## [1] TRUE
## 
## [[11]]
## [1] TRUE
## 
## [[12]]
## [1] TRUE
datxy<-read.csv("dat_xy_isa.csv", dec=",",sep=",", header=TRUE)

attach(datxy);str(datxy) 
## 'data.frame':    84 obs. of  6 variables:
##  $ exp   : int  1 1 1 1 1 1 2 2 2 2 ...
##  $ esp   : Factor w/ 2 levels "M. frut","M. laxa": 1 1 1 2 2 2 1 1 1 2 ...
##  $ iso   : Factor w/ 6 levels "Mf1","Mf2","Mf3",..: 1 2 3 4 5 6 1 2 3 4 ...
##  $ var   : Factor w/ 7 levels "inc","incub",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ var_id: Factor w/ 7 levels "Incidence","Incubation period",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ val   : num  90 72.8 75 80 68.6 ...
datxy <- transform(datxy, exp=factor(exp)); str(datxy) 
## 'data.frame':    84 obs. of  6 variables:
##  $ exp   : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 2 2 2 2 ...
##  $ esp   : Factor w/ 2 levels "M. frut","M. laxa": 1 1 1 2 2 2 1 1 1 2 ...
##  $ iso   : Factor w/ 6 levels "Mf1","Mf2","Mf3",..: 1 2 3 4 5 6 1 2 3 4 ...
##  $ var   : Factor w/ 7 levels "inc","incub",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ var_id: Factor w/ 7 levels "Incidence","Incubation period",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ val   : num  90 72.8 75 80 68.6 ...
levels(datxy$esp)[1]="M. fruticola"

full_dataset <- reshape(datxy[,c(1,2,3,5,6)], 
                        timevar = "var_id",
                        idvar = c("exp", "esp", "iso"),
                        direction = "wide")
names(full_dataset)<-c( "Experiment","Specie","Isolate","Incidence","Incubation_period","Latency_period",
                        "Lesion_size","Sporulation","In_vitro_Growth_rate", "In_vitro_Sporulation" )
datxy5<-read.csv("dat_xy5.csv", dec=",",sep=",", header=TRUE)

exp.dat <- reshape(datxy5[,c(1,2,3,4,6)], 
             timevar = "var",
             idvar = c("exp", "esp", "iso"),
             direction = "wide")
expdat_graph <- reshape(datxy5[,c(1,2,3,5,6)], 
                   timevar = "var_id",
                   idvar = c("exp", "esp", "iso"),
                   direction = "wide")
names(expdat_graph)<-c( "Experiment","Specie","Isolate","Incidence","Incubation_period","Latency_period", "Lesion_size","In_vitro_Growth_rate")
dat = cast(datxy5, iso*esp~ var, mean, value = 'val') # mean values wide
dat.graph=cast(datxy5, iso*esp~ var_id, mean, value = 'val') # mean values wide for graphics

datp = cast(datxy5, iso*esp~ var, mean, value = 'val.p') # Standarized mean values wide 
datp.graph=cast(datxy5, iso*esp~ var_id, mean, value = 'val.p')

dap=cbind(datp.graph[,3:7], row.names=levels(datp.graph$iso))  # Standarized mean matrix
exp.datp <- reshape(datxy5[,c(1,2,3,4,7)], 
                   timevar = "var",
                   idvar = c("exp", "esp", "iso"),
                   direction = "wide")

exp.datp$id=  as.factor(paste(exp.datp$iso,exp.datp$exp,sep="."))
names(exp.datp)[4:8]<-c( "inc","incub","lat","les","vitro_gr")
exp.datp= exp.datp[,c(9,4,5,6,7,8)]
expdap=cbind(exp.datp[,2:6], row.names=levels(exp.datp$id))

Graf 1

xyplot(val ~ iso|var_id, group=esp, type=c("p","a"), pch=19, # Full graphic
       data = datxy, scales = "free",ylab="",xlab="",
       auto.key = list(cex=1,x= .78, y = .7, corner = c(0, 0), points = TRUE, pch=19,lines = TRUE))

xyplot(val ~ iso|var_id*exp, group=esp, type=c("p","a"), pch=19, # Exp Split 
       data = datxy, scales = "free", xlab="",  ylab="",
       #auto.key = list(cex=1,x= .78, y = .7, corner = c(0, 0), points = TRUE, pch=19,lines = TRUE)
       )

Graf 2!

Plot.0 <- ggplot(datxy5, aes( x = var_id, y = val , fill = var_id ) ) +
  guides(fill=FALSE)+
  theme(legend.position="none")+
  geom_boxplot( alpha = 0.6, outlier.colour = c("grey40") , outlier.size=3) +
  facet_wrap(~exp) +
  theme_bw() +
  labs(x="", y="") +
  theme(axis.text.x = element_text(colour="black", size = 11, ,angle=45,vjust=1,hjust=1))
Plot.0                             

Padronizacao das variaveis

mu<- colMeans(dat)   ; mu
##        inc      incub        lat        les   vitro_gr 
## 63.8383333  5.5416667  6.3250000  5.3925000  0.7741667
s<- diag(var(dat))   ; s
##          inc        incub          lat          les     vitro_gr 
## 164.22580667   1.13541667   0.49875000   0.54407750   0.09588417
dat$Incidence <-  (dat$inc  - mu[1])/sqrt(s[1])
dat$Incubation_period <-  (dat$incub  - mu[2])/sqrt(s[2])
dat$Latency_period <-  (dat$lat  - mu[3])/sqrt(s[3])
dat$Lesion_size <-  (dat$les  - mu[4])/sqrt(s[4])
dat$In_vitro_Growth_rate <-  (dat$vitro_gr - mu[5])/sqrt(s[5])

Graf 2!

Plot.2 <- ggplot(datxy5, aes( x = var_id, y = val.p , fill = var_id ) ) +
  guides(fill=FALSE)+
  theme(legend.position="none")+
  geom_boxplot( alpha = 0.6, outlier.colour = c("grey40") , outlier.size=3) +
   theme_bw() +
  labs(x="", y="") +
  theme(axis.text.x = element_text(colour="black", size = 11, ,angle=45,vjust=1,hjust=1))
Plot.2                             

CORRGRAMA

panel.corrgram <-
  function(x, y, z, subscripts, at,
           level = 0.9, label = FALSE, ...)
  {
    require("ellipse", quietly = TRUE)
    x <- as.numeric(x)[subscripts]
    y <- as.numeric(y)[subscripts]
    z <- as.numeric(z)[subscripts]
    zcol <- level.colors(z, at = at, ...)
    for (i in seq(along = z)) {
      ell <- ellipse(z[i], level = level, npoints = 50,
                     scale = c(.2, .2), centre = c(x[i], y[i]))
      panel.polygon(ell, col = zcol[i], border = zcol[i], ...)
    }
    if (label)
      panel.text(x = x, y = y, lab = 100 * round(z, 2), cex = 0.8,
                 col = ifelse(z < 0, "white", "black"))
  }
cor.dat <- cor(dap[, !sapply(dap, is.factor)], use = "pair")
ord <- order.dendrogram(as.dendrogram(hclust(dist(cor.dat))))

levelplot(cor.dat[ord, ord], at = do.breaks(c(-1.01, 1.01), 20),
          xlab = NULL, ylab = NULL, main="", 
          colorkey = list(space = "top"),
          scales = list(x = list(rot = 90)),
          panel = panel.corrgram, label = TRUE)

Componentes principais

row.names(dat.graph)=dat.graph$iso
pca<-princomp(dat.graph[,3:7] ,cor=TRUE);
#summary(pca.dap,loadings=TRUE) # Mean data
biplot(pca, col=c("black","red"), ylim=c(-1,1),xlim=c(-1,1), cex=0.9,main="")
abline(h=0,v=0, lty=3)

pca.expdap<-princomp(expdap,cor=TRUE);summary(pca.expdap,loadings=TRUE) # Full data
## Importance of components:
##                           Comp.1    Comp.2     Comp.3     Comp.4
## Standard deviation     1.8223712 1.0144679 0.65004873 0.44314222
## Proportion of Variance 0.6642073 0.2058290 0.08451267 0.03927501
## Cumulative Proportion  0.6642073 0.8700364 0.95454903 0.99382404
##                             Comp.5
## Standard deviation     0.175726545
## Proportion of Variance 0.006175964
## Cumulative Proportion  1.000000000
## 
## Loadings:
##          Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## inc       0.383 -0.659 -0.240  0.437 -0.414
## incub    -0.457  0.447 -0.415  0.307 -0.570
## lat      -0.488 -0.181  0.448  0.669  0.283
## les       0.440  0.397  0.660  0.168 -0.431
## vitro_gr  0.462  0.419 -0.366  0.489  0.488
biplot(pca.expdap, col=c("black","red"), ylim=c(-1,1),xlim=c(-1,1), cex=0.9,main="")

Analise de agrupamento

row.names(datp)=datp$iso
d1<-dist(datp[,3:7], method='euclidean')# Matriz de Distancias euclidianas
round(d1,2)
##      1    2    3    4    5
## 2 1.63                    
## 3 1.36 1.21               
## 4 2.13 3.08 2.14          
## 5 2.99 3.12 2.01 2.51     
## 6 4.50 4.53 3.55 3.01 2.32
hc <- hclust(d1, "ward")      # Metodo de Ward
## The "ward" method has been renamed to "ward.D"; note new "ward.D2"
hc <- hclust(d1, "ave")
plot(as.dendrogram(hc),horiz=TRUE, xlab="Euclidean distances") # Dendrograma

#title(main="Dendogram")

Analise exploratorio de fatores

(scores<-factanal(dap,factors=2, method="mle", rotation="varimax",scores="regression"))
## 
## Call:
## factanal(x = dap, factors = 2, scores = "regression", rotation = "varimax",     method = "mle")
## 
## Uniquenesses:
##             Incidence     Incubation period In vitro Growth rate  
##                 0.005                 0.200                 0.005 
##        Latency period           Lesion size 
##                 0.013                 0.352 
## 
## Loadings:
##                       Factor1 Factor2
## Incidence              0.178   0.982 
## Incubation period     -0.370  -0.815 
## In vitro Growth rate   0.963   0.261 
## Latency period        -0.898  -0.426 
## Lesion size            0.787   0.170 
## 
##                Factor1 Factor2
## SS loadings      2.520   1.906
## Proportion Var   0.504   0.381
## Cumulative Var   0.504   0.885
## 
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 10.33 on 1 degree of freedom.
## The p-value is 0.00131
(cargas=scores$loadings)
## 
## Loadings:
##                       Factor1 Factor2
## Incidence              0.178   0.982 
## Incubation period     -0.370  -0.815 
## In vitro Growth rate   0.963   0.261 
## Latency period        -0.898  -0.426 
## Lesion size            0.787   0.170 
## 
##                Factor1 Factor2
## SS loadings      2.520   1.906
## Proportion Var   0.504   0.381
## Cumulative Var   0.504   0.885
(dap=cbind(dap,round(scores$scores,2)))
##       Incidence Incubation period In vitro Growth rate  Latency period
## Mf1  1.12814515        -0.6121836            0.72697783    -0.82673738
## Mf2 -0.03382362        -0.5808435            1.01377649    -0.66196693
## Mf3 -0.08557795        -0.2207613            0.55697466    -0.40591803
## Ml1  0.96420147        -0.5527032           -0.70391314     0.37018660
## Ml2 -0.78636461         1.0443261            0.01268569    -0.04267482
## Ml3 -1.18658044         0.9221655           -1.60650153     1.56711057
##     Lesion size Factor1 Factor2
## Mf1   0.3675801    0.45    1.16
## Mf2   1.4639318    1.08   -0.23
## Mf3   0.4317712    0.63   -0.20
## Ml1  -0.6510400   -1.07    1.25
## Ml2  -0.8090105    0.30   -0.92
## Ml3  -0.8032326   -1.40   -1.06

Analise discriminante

variables = exp.dat[,4:8]
Yp<-as.matrix(variables)
row.names(Yp)=exp.dat$iso
grupo = exp.dat$esp

mandat=manova(Yp~grupo)
test_Wilks<-summary(mandat,test="Wilks")
#Si Pr<0.05, hĂ¡ diferencas entre as medias -> analise discriminante tem sentido
(poder_discrim<-summary.aov(mandat))
##  Response val.inc :
##             Df Sum Sq Mean Sq F value Pr(>F)
## grupo        1    253   253.0  0.9598 0.3503
## Residuals   10   2636   263.6               
## 
##  Response val.incub :
##             Df  Sum Sq Mean Sq F value Pr(>F)
## grupo        1  6.0208  6.0208  3.1345 0.1071
## Residuals   10 19.2083  1.9208               
## 
##  Response val.lat :
##             Df Sum Sq Mean Sq F value  Pr(>F)  
## grupo        1 3.1008 3.10083  5.0488 0.04843 *
## Residuals   10 6.1417 0.61417                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response val.les :
##             Df  Sum Sq Mean Sq F value  Pr(>F)  
## grupo        1  3.3391  3.3391  3.3162 0.09861 .
## Residuals   10 10.0690  1.0069                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response val.vitro_gr :
##             Df  Sum Sq Mean Sq F value   Pr(>F)   
## grupo        1 0.68641 0.68641  17.974 0.001717 **
## Residuals   10 0.38188 0.03819                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
z <- lda(grupo~.,data=variables)
P <- predict(z,variables)
(datos_clasificados<-table(grupo,P$class)) 
##          
## grupo     M. frut M. laxa
##   M. frut       6       0
##   M. laxa       0       6
(fun_canonica<-z$scaling)
##                      LD1
## val.inc       0.09497875
## val.incub     1.84420110
## val.lat      -2.18238504
## val.les       0.55971924
## val.vitro_gr -9.58172652
iso_ameixa<-structure(list(inc = 40, incu = 5, lat = 6, les = 8,vitro_gr= 0.6, Grupo = 3), 
                    .Names = c("inc", "incub", "lat", "les","vitro_gr", "Grupo"), 
                    row.names = c("ISO_ameixa"), 
                    class = "data.frame")
attach(iso_ameixa)

Classificate new case

# p1<-predict(z, iso_ameixa)

# (nuevos_casos<-p1$class)
names(expdat_graph)
## [1] "Experiment"           "Specie"               "Isolate"             
## [4] "Incidence"            "Incubation_period"    "Latency_period"      
## [7] "Lesion_size"          "In_vitro_Growth_rate"
attach(expdat_graph)
da=cbind(expdat_graph[,4:8], row.names=levels(exp.datp$id))  
par(mfrow=c(2,2))

plot(Incidence, Incubation_period, data=expdat_graph, pch=19,
     xlab="Incidence",ylab="Incubation period",
     col=(1:2)[expdat_graph$Specie])
## Warning in plot.window(...): "data" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "data" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in box(...): "data" is not a graphical parameter
## Warning in title(...): "data" is not a graphical parameter
plot(Latency_period, Lesion_size, data=expdat_graph, pch=19,
     xlab="Latency period", ylab="Lesion size",
     col=(1:2)[expdat_graph$Specie])
## Warning in plot.window(...): "data" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "data" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in box(...): "data" is not a graphical parameter
## Warning in title(...): "data" is not a graphical parameter
plot(In_vitro_Growth_rate, data=expdat_graph, pch=19,
     ylab="In vitro Growth rate",
     col=(1:2)[expdat_graph$Specie])
## Warning in plot.window(...): "data" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "data" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "data" is not
## a graphical parameter
## Warning in box(...): "data" is not a graphical parameter
## Warning in title(...): "data" is not a graphical parameter
plot(P$x,col=grupo,main='',pch=19, xlim=c(0,16), ylab="Discrimant function",axes=FALSE,xlab="")
abline(h=0,lty=2); box(col="black")
text(P$x, row.names(Yp), cex=0.8, pos=4, col="blue")
axis(2, col="black", col.ticks="black", col.axis="black", cex.axis=0.8)

# plot(c(P$x,p1$x),col=c(grupo,"green"),main='',pch=19, xlim=c(0,16), ylab="Discrimant # function",axes=FALSE,xlab="")
#abline(h=0,lty=2); box(col="black")
#text(c(P$x,p1$x), c(row.names(Yp), "Iso_Ameixa"), cex=0.8, pos=4, col="blue")
#axis(2, col="black", col.ticks="black", col.axis="black", cex.axis=0.8)
layout(1)
stars(dat)

aplpack::faces(dap[,1:5],face.type=1)

## effect of variables:
##  modified item       Var                    
##  "height of face   " "Incidence"            
##  "width of face    " "Incubation period"    
##  "structure of face" "In vitro Growth rate "
##  "height of mouth  " "Latency period"       
##  "width of mouth   " "Lesion size"          
##  "smiling          " "Incidence"            
##  "height of eyes   " "Incubation period"    
##  "width of eyes    " "In vitro Growth rate "
##  "height of hair   " "Latency period"       
##  "width of hair   "  "Lesion size"          
##  "style of hair   "  "Incidence"            
##  "height of nose  "  "Incubation period"    
##  "width of nose   "  "In vitro Growth rate "
##  "width of ear    "  "Latency period"       
##  "height of ear   "  "Lesion size"