Hawaiian Airlines ( HA )

1 - Look for direct correlation between specific ppm (price per mile) on selected ‘future-departing day’ and ‘Revenue’

2 - Box charts future-departing days price per mile variation

3 - Building revenue predictive model based on ppm for all Days

# Model A:
modelA <- lm( REVENUE ~ PPM_DAY0+PPM_DAY1+PPM_DAY2+PPM_DAY3+PPM_DAY4+PPM_DAY5+PPM_DAY6+PPM_DAY7+PPM_DAY15+PPM_DAY21+PPM_DAY30+PPM_DAY60+PPM_DAY90+PPM_DAY180 , data = dfa )
# Stats summary:
summary( modelA )
## 
## Call:
## lm(formula = REVENUE ~ PPM_DAY0 + PPM_DAY1 + PPM_DAY2 + PPM_DAY3 + 
##     PPM_DAY4 + PPM_DAY5 + PPM_DAY6 + PPM_DAY7 + PPM_DAY15 + PPM_DAY21 + 
##     PPM_DAY30 + PPM_DAY60 + PPM_DAY90 + PPM_DAY180, data = dfa)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -26.984  -7.954   1.286   7.703  21.131 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   337.43      52.09   6.478 7.63e-06 ***
## PPM_DAY0      -54.75      75.16  -0.728   0.4768    
## PPM_DAY1      133.71     146.11   0.915   0.3737    
## PPM_DAY2      -16.62      16.03  -1.037   0.3154    
## PPM_DAY3     -132.51      71.60  -1.851   0.0828 .  
## PPM_DAY4      231.54     256.50   0.903   0.3801    
## PPM_DAY5       55.61     117.46   0.473   0.6423    
## PPM_DAY6      -45.39      86.58  -0.524   0.6073    
## PPM_DAY7     -251.30     517.33  -0.486   0.6337    
## PPM_DAY15    1004.92     819.57   1.226   0.2379    
## PPM_DAY21   -1039.69     733.35  -1.418   0.1755    
## PPM_DAY30     119.98     322.32   0.372   0.7146    
## PPM_DAY60    -108.51     194.64  -0.557   0.5849    
## PPM_DAY90    -569.21     247.45  -2.300   0.0352 *  
## PPM_DAY180    -22.95      43.71  -0.525   0.6067    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.21 on 16 degrees of freedom
## Multiple R-squared:  0.6245, Adjusted R-squared:  0.2959 
## F-statistic:   1.9 on 14 and 16 DF,  p-value: 0.1093
dfa$modelA <- predict( modelA , dfa)

# Plot scattered chart: Model Prediction vs Actual
plot( data.frame(cbind(actuals=dfa$REVENUE, predicteds=dfa$modelA )) )

# Plot Hexa Binning chart: Model Prediction vs Actual
plot(hexbin(dfa$REVENUE, dfa$modelA , xbins=5) , main="Hexagonal Binning")

4 - Building revenue predictive model based on ppm for future depart days 0, 3, 6, 30 and 180

#modelB <- lm( REVENUE ~ PPM_DAY0+PPM_DAY3+PPM_DAY4+PPM_DAY15+PPM_DAY21+PPM_DAY30 , data = dfa )
# Model B:
modelB <- lm( REVENUE ~ PPM_DAY0+PPM_DAY3+PPM_DAY6+PPM_DAY30+PPM_DAY180 , data = dfa )
summary( modelB )
## 
## Call:
## lm(formula = REVENUE ~ PPM_DAY0 + PPM_DAY3 + PPM_DAY6 + PPM_DAY30 + 
##     PPM_DAY180, data = dfa)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -33.731 -10.107  -1.997  13.748  31.650 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  233.129     24.945   9.346 1.23e-09 ***
## PPM_DAY0     -30.007     55.170  -0.544   0.5913    
## PPM_DAY3    -125.481     60.462  -2.075   0.0484 *  
## PPM_DAY6      75.223     69.240   1.086   0.2877    
## PPM_DAY30      3.275    127.044   0.026   0.9796    
## PPM_DAY180    -6.268     25.069  -0.250   0.8046    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.17 on 25 degrees of freedom
## Multiple R-squared:  0.1621, Adjusted R-squared:  -0.005498 
## F-statistic: 0.9672 on 5 and 25 DF,  p-value: 0.4566
dfa$modelB <- predict( modelB , dfa)

# Plot scattered chart: Model Prediction vs Actual
plot( data.frame(cbind(actuals=dfa$REVENUE, predicteds=dfa$modelB )) )

# Plot Hexa Binning chart: Model Prediction vs Actual
plot(hexbin(dfa$REVENUE, dfa$modelB , xbins=5) , main="Hexagonal Binning")

5 - Line Chart showing ppm variation around the mean for each ppm range, revenue and both predictor models

Chart below is representing normalized (around their means) the fields: revenue, prediction, day 0 to 180