This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
Hold-out forecast sample : 2006-2007 (n=24)
Let \(y_t\) denote log(IP) or LOG(CLI) trend
ADF:\(\Delta\)\(y_t\)=\(\alpha\)+\(\beta\)\(t\)+\(\rho\)\(y_{t-1}\)+\(\sum_{j=1}^3\)\(\gamma_j\)\(\Delta\)\(y_{t-j}\)+\(\epsilon_t\)
-1.6 for LOGIP, -1.8 for LOGCLI, Not stationary
y5.adf.nc.2
##
## ###############################################################
## # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
## ###############################################################
##
## The value of the test statistic is: -0.5779 1.0282 1.4516
summary(y5.adf.nc.2)@testreg$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.919711e-04 7.820973e-04 1.1404861 0.2552498
## z.lag.1 -5.520094e-03 9.552198e-03 -0.5778873 0.5638959
## tt -8.762567e-06 5.662198e-06 -1.5475556 0.1230807
## z.diff.lag 3.582966e-02 6.555305e-02 0.5465750 0.5851916
y5.adf.nc.2@testreg$coefficients[2,3]
## [1] -0.5778873
Forecast GRIP with information {\(GRIP_{t-j}\),\(GRCLI_{t-j}\), \(j\)=3,4,5…}
\(H_0\) ;\(\beta_4\)=\(\beta_5\)=…\(\beta_{12}\)=0
1.6<1.9209212, -> \(H_0\)를 기각할수 없음
1. Item 1
2. Item 2
3. Item 3
+ Item 3a
+ Item 3b
* Item 1
* Item 2
+ Item 2a
+ Item 2b
library(lmtest)
bgtest(GRIP~lag(GRIP,3),order=3)
##
## Breusch-Godfrey test for serial correlation of order up to 3
##
## data: GRIP ~ lag(GRIP, 3)
## LM test = 1.9032, df = 3, p-value = 0.5927
bgtest(GRIP~lag(GRIP,3)+lag(GRIP,4)+lag(GRIP,5)+lag(GRIP,6)
+lag(GRIP,7)+lag(GRIP,8)+lag(GRIP,9)+lag(GRIP,10)
+lag(GRIP,11)+lag(GRIP,12),order=3)
##
## Breusch-Godfrey test for serial correlation of order up to 3
##
## data: GRIP ~ lag(GRIP, 3) + lag(GRIP, 4) + lag(GRIP, 5) + lag(GRIP, 6) + lag(GRIP, 7) + lag(GRIP, 8) + lag(GRIP, 9) + lag(GRIP, 10) + lag(GRIP, 11) + lag(GRIP, 12)
## LM test = 1.9032, df = 3, p-value = 0.5927
plot(res03[-(229:237)],res12,xlab="residual model lag3",
ylab="resid model lag 3-12",main="AR model for GRIP",col=c("red","blue")) #lec 6.5,slide 8/15
par(mfrow=c(1,2))
plot(GRIP[-(229:240)],res12,xlab="GRIP", ylab="RES LAG3-12",main="GRIP vs RES LAG 3-12")
plot(GRIP[-(238:240)],res03,xlab="GRIP", ylab="RES LAG3",main="GRIP vs RES LAG 3")
\(GRIP_t\)=0.0017+0.247\(GRIP_{t-3}\)+\(\epsilon_t\) (\(t_b\)=3.9,\(R^2\)=0.061)
GRC<-estSample$GRCLI
GRCLI<-ts(GRC)
regADL<-lm(formula=dyn(GRIP~lag(GRIP,3)+lag(GRCLI,6)))