Import libraries
Import San Bernardino Deed Mortgage Data
print(c("There are", nrow(df.06071_deed), "rows in the dataset, bro!"))
[1] "There are" "864894"
[3] "rows in the dataset, bro!"
Drop missing data
colSums(sapply(df.06071_deed, is.na))
FIPSCODE PROPERTYUNIQUEID
0 0
APN MatchedFlag
50 66077
HOUSENUMBER DIRECTIONLEFT
145766 740323
STREETNAME Suffix
93923 112561
UNITTYPE UNITNUMBER
839394 839661
CITY STATE
17709 50
ZIPCODE ZIPPLUS4
18089 224280
CARRIERCODE CORPORATEINDICATOR
224166 755489
BUYERNAMEBORROWERNAME1 OWNERETALIND
3292 809418
OwnerCAREOfNAME OWNERSHIPRIGHTSCODE1
843502 379196
OWNERRELATIONSHIPTYPE1 BUYERNAMEBORROWERNAME2
76645 509770
OWNERSHIPRIGHTSCODE2 OWNERRELATIONSHIPTYPE2
731223 450907
BUYER1LASTNAME BUYER1FIRSTNAME
172697 173300
BUYER1MIDDLEName BUYER1SUFFIX
438316 838887
BUYER2LASTNAME BUYER2FIRSTNAME
511465 511715
BUYER2MIDDLEName MAILHOUSENUMBER
644471 333451
MAILDIRECTIONLEFT MAILSTREETNAME
765698 287873
MAILMODE MAILCITY
355182 288058
MAILSTATE MAILZIPCODE
288563 288911
MAILZIPPlus4 MAILCARRIERCODE
309186 309148
FirstAmericanUniqueTransactionID RECORDINGDATE
0 0
SALEDATE DOCUMENTNUMBER
71769 0
DOCUMENTTYPE TRANSACTIONTYPE
0 76811
SELLERNAME SELLERNAMECORPINDICATOR
273845 757883
SELLERNAME2 SELLERNAME2CORPINDICATOR
604486 811699
SALEAMOUNT TRANSFERTAX
271503 312942
RESALEFLAG NEWCONSTRUCTIONFLAG
697858 853476
INTERFAMILYFLAG FORCLOSUREFLAG
775826 845377
REOSALEFLAG FIRSTMORTGAGERECORDINGDATE
843621 417318
FIRSTMORTGAGEDOCDATE FIRSTMORTGAGEDOCUMENTNUMBER
446677 400913
FIRSTMORTGAGEDETAILEDDOCUMENTTYP FIRSTMORTGAGEMORTGAGEAMOUNT
441172 38825
FIRSTMORTGAGELENDERNAME FIRSTMORTGAGELOANTYPECODE
398469 469318
FIRSTMORTGAGETERMCODE FIRSTMORTGAGETERM
530104 530104
FIRSTMORTGAGEDUEDATE FIRSTMORTGAGEINTERESTRATETYPE
530104 790480
FIRSTMORTGAGEINTERESTRATE FIRSTMORTGAGESELLERCARRYBACKFLAG
64260 854758
FIRSTMORTGAGEPRIVATEPARTYLENDER FIRSTMORTGAGEREFIFLAG
855051 731562
FIRSTMORTGAGEEQUITYFLAG FIRSTMORTGAGEHELOCFLAG
820870 830914
FIRSTMORTGAGEOTHERSUBORDINATELOA FIRSTMORTGAGESecondHomeRider
787000 851911
FIRSTMORTGAGECondominiumRider FIRSTMORTGAGEMultiFamily4Rider
852260 834025
FIRSTMORTGAGEPlannedUnitDevelopm FIRSTMORTGAGEAssumabilityRider
835061 851623
FIRSTMORTGAGEFixedStepRateRider FIRSTMORTGAGEAdjustableRateRider
853795 848794
FIRSTMORTGAGEAdjustableRateIndex FIRSTMORTGAGEChangeIndex
831376 838192
FIRSTMORTGAGEFirstChangeDateMont FIRSTMORTGAGEFirstChangeDateYear
837603 835069
FIRSTMORTGAGEMaximumInterestRate FIRSTMORTGAGEMinimumInterestRate
835963 843684
FIRSTMORTGAGERateChangeFrequency SECONDMORTGAGEAMOUNT
797866 311856
SECONDMORTGAGEMultiFamily4Rider SECONDMORTGAGEPlannedUnitDevelop
849629 849615
LotCode LandLot
801759 112552
Block District
775505 842045
Unit CityMunicipalityTownship
822693 222132
SubdivisionName TractNo
694435 246035
SecTwnRngMer LEGALDESCRIPTION
777377 731627
TITLECOMPANYNAME MULTIAPN
128333 781586
UPDATETIMESTAMP UCID
82 82
Inspect Data
df.06071_deed %>%
select(SALEAMOUNT, FIRSTMORTGAGEMORTGAGEAMOUNT, RECORDINGDATE, FIRSTMORTGAGERECORDINGDATE) %>%
head()
#DocTypePercent <- as.data.table(count(df.06071_deed, DOCUMENTTYPE))
Document Type Freq
- 93 = Standalone Mortgage
- 40 = Intrafamily Transfer and Dissolution
- 36 = Grant Deed
- 27 = Deed
- 55 = Quit Claim Deed
- 29 = Affidavit of Death of Join Tenant
- 52 = Public Action - Common in Florida (Clerks Tax Deed or Tax Deeds or Property sold for Taxes)
Inspect Ownership Rights Type
Inspect Owner Relationship Type
Inspect Transaction Type with Doc Type
Doc Type High Count
- 93 = Standalone Mortgage
- 40 = Intrafamily Transfer and Dissolution
- 36 = Grant Deed
- 27 = Deed
- 55 = Quit Claim Deed
- 29 = Affidavit of Death of Join Tenant
- 52 = Public Action - Common in Florida (Clerks Tax Deed or Tax Deeds or Property sold for Taxes)
docHighCount <- df.06071_deed %>%
select(DOCUMENTTYPE) %>%
filter(DOCUMENTTYPE == "93" | DOCUMENTTYPE == "36" | DOCUMENTTYPE == "40" | DOCUMENTTYPE == "27" | DOCUMENTTYPE == "55" | DOCUMENTTYPE == "29" | DOCUMENTTYPE == "52")
plot.DocTypeHighCount <- ggplot(docHighCount, aes(DOCUMENTTYPE), options(scipen = 1000))
plot.DocTypeHighCount + geom_bar() + labs(title="Document Type - High Count")

Doc Type Mid Count
docMidCount <- df.06071_deed %>%
select(DOCUMENTTYPE) %>%
filter(DOCUMENTTYPE == "69" | DOCUMENTTYPE == "21" | DOCUMENTTYPE == "20" | DOCUMENTTYPE == "37" | DOCUMENTTYPE == "61" | DOCUMENTTYPE == "39" | DOCUMENTTYPE == "71" | DOCUMENTTYPE == "30")
plot.DocTypeMidCount <- ggplot(docMidCount, aes(DOCUMENTTYPE), options(scipen = 1000))
plot.DocTypeMidCount + geom_bar() + labs(title="Document Type - Mid Count")

LS0tDQp0aXRsZTogIlNCIENvdW50eSBEZWVkICYgTW9ydGdhZ2UgRURBICYgVmlzdWFsaXphdG9uIg0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOiBkZWZhdWx0DQogIGh0bWxfZG9jdW1lbnQ6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KIyMjIyNJbXBvcnQgbGlicmFyaWVzDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KGRhdGEudGFibGUpDQpgYGANCg0KIyMjIyNJbXBvcnQgU2FuIEJlcm5hcmRpbm8gRGVlZCBNb3J0Z2FnZSBEYXRhDQpgYGB7cn0NCmRmLjA2MDcxX2RlZWQgPC0gcmVhZC5jc3YoIkM6L1VzZXJzL0phbWVzL0RvY3VtZW50cy9Nb2RlbHMvRGF0YVRyZWUvMDYwNzFfU2FuX0Jlcm5hcmRpbm8vMDYwNzFfRGVlZC5jc3YiLCBjb2xDbGFzc2VzPSJjaGFyYWN0ZXIiICwgbmEuc3RyaW5ncz1jKCIiLCIgIiwiTkEiKSwgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFKQ0KcHJpbnQoYygiVGhlcmUgYXJlIiwgbnJvdyhkZi4wNjA3MV9kZWVkKSwgInJvd3MgaW4gdGhlIGRhdGFzZXQsIGJybyEiKSkNCmBgYA0KDQoNCiMjIyMjRHJvcCBtaXNzaW5nIGRhdGENCmBgYHtyfQ0KY29sU3VtcyhzYXBwbHkoZGYuMDYwNzFfZGVlZCwgaXMubmEpKQ0KI1RocmVzaG9sZCBhdCA5OSUgbWlzc2luZyB0byBjbGFzc2lmeSBhcyBtaXNzaW5nIGZlYXR1cmUNCm5vbk1pc3NpbmdGZWF0dXJlcyA8LSBjb2xuYW1lcyhkZi4wNjA3MV9kZWVkKVsoY29sU3Vtcyhpcy5uYShkZi4wNjA3MV9kZWVkKSkgLyAobnJvdyhkZi4wNjA3MV9kZWVkKSkgPCAuOTkpXQ0KZGYuMDYwNzFfZGVlZCA8LSBzZWxlY3QoZGYuMDYwNzFfZGVlZCwgbm9uTWlzc2luZ0ZlYXR1cmVzKQ0KYGBgDQoNCiMjIyMjSW5zcGVjdCBEYXRhDQpgYGB7cn0NCmRmLjA2MDcxX2RlZWQgJT4lDQpzZWxlY3QoU0FMRUFNT1VOVCwgRklSU1RNT1JUR0FHRU1PUlRHQUdFQU1PVU5ULCBSRUNPUkRJTkdEQVRFLCBGSVJTVE1PUlRHQUdFUkVDT1JESU5HREFURSkgJT4lDQogIGhlYWQoKQ0KI0RvY1R5cGVQZXJjZW50IDwtIGFzLmRhdGEudGFibGUoY291bnQoZGYuMDYwNzFfZGVlZCwgRE9DVU1FTlRUWVBFKSkNCmBgYA0KDQojIyMjI0RvY3VtZW50IFR5cGUgRnJlcQ0KDQoqIDkzID0gU3RhbmRhbG9uZSBNb3J0Z2FnZQ0KKiA0MCA9IEludHJhZmFtaWx5IFRyYW5zZmVyIGFuZCBEaXNzb2x1dGlvbg0KKiAzNiA9IEdyYW50IERlZWQNCiogMjcgPSBEZWVkDQoqIDU1ID0gUXVpdCBDbGFpbSBEZWVkDQoqIDI5ID0gQWZmaWRhdml0IG9mIERlYXRoIG9mIEpvaW4gVGVuYW50DQoqIDUyID0gUHVibGljIEFjdGlvbiAtIENvbW1vbiBpbiBGbG9yaWRhIChDbGVya3MgVGF4IERlZWQgb3IgVGF4IERlZWRzIG9yIFByb3BlcnR5IHNvbGQgZm9yIFRheGVzKQ0KDQpgYGBge3J9DQpEb2NUeXBlRnJlcSA8LSBkYXRhLnRhYmxlKHRhYmxlKGRmLjA2MDcxX2RlZWQkRE9DVU1FTlRUWVBFKSkNCmNvbG5hbWVzKERvY1R5cGVGcmVxKSA8LSBjKCJEb2NUeXBlIiwgImNvdW50IikNCkRvY1R5cGVGcmVxIDwtIGFycmFuZ2UoRG9jVHlwZUZyZXEsIGRlc2MoY291bnQpKQ0KRG9jVHlwZUZyZXEgDQpgYGANCg0KIyMjIyNUcmFuc2FjdGlvbiBUeXBlIEZyZXENCmBgYHtyfQ0KVHJhbnNUeXBlRnJlcSA8LSBkYXRhLnRhYmxlKHRhYmxlKGRmLjA2MDcxX2RlZWQkVFJBTlNBQ1RJT05UWVBFKSkNCmNvbG5hbWVzKFRyYW5zVHlwZUZyZXEpIDwtIGMoIlRyYW5zVHlwZSIsICJjb3VudCIpDQpUcmFuc1R5cGVGcmVxIDwtIGFycmFuZ2UoVHJhbnNUeXBlRnJlcSwgZGVzYyhjb3VudCkpDQpUcmFuc1R5cGVGcmVxDQpgYGANCg0KIyMjIyNJbnNwZWN0IE93bmVyc2hpcCBSaWdodHMgVHlwZSANCmBgYGB7cn0NCk93bmVyUmlnaHRzRnJlcSA8LSBkYXRhLnRhYmxlKHRhYmxlKGRmLjA2MDcxX2RlZWQkT1dORVJTSElQUklHSFRTQ09ERTEpKQ0KY29sbmFtZXMoT3duZXJSaWdodHNGcmVxKSA8LSBjKCJPd25lclJpZ2h0c1R5cGUiLCAiY291bnQiKQ0KT3duZXJSaWdodHNGcmVxIDwtIGFycmFuZ2UoT3duZXJSaWdodHNGcmVxLCBkZXNjKGNvdW50KSkNCk93bmVyUmlnaHRzRnJlcQ0KDQpgYGANCg0KIyMjIyNJbnNwZWN0IE93bmVyIFJlbGF0aW9uc2hpcCBUeXBlIA0KYGBgYHtyfQ0KT3duZXJSZWxhdGlvbnNoaXBGcmVxIDwtIGRhdGEudGFibGUodGFibGUoZGYuMDYwNzFfZGVlZCRPV05FUlJFTEFUSU9OU0hJUFRZUEUxKSkNCmNvbG5hbWVzKE93bmVyUmVsYXRpb25zaGlwRnJlcSkgPC0gYygiT3duZXJSZWxhdGlvblR5cGUiLCAiY291bnQiKQ0KT3duZXJSZWxhdGlvbnNoaXBGcmVxIDwtIGFycmFuZ2UoT3duZXJSZWxhdGlvbnNoaXBGcmVxLCBkZXNjKGNvdW50KSkNCk93bmVyUmVsYXRpb25zaGlwRnJlcQ0KDQpgYGANCg0KIyMjIyNJbnNwZWN0IFRyYW5zYWN0aW9uIFR5cGUgd2l0aCBEb2MgVHlwZQ0KYGBgYHtyfQ0KRG9jVHJhbnNhY3Rpb25GcmVxIDwtIGRhdGEudGFibGUodGFibGUoZGYuMDYwNzFfZGVlZCRET0NVTUVOVFRZUEUsIGRmLjA2MDcxX2RlZWQkVFJBTlNBQ1RJT05UWVBFKSkNCmNvbG5hbWVzKERvY1RyYW5zYWN0aW9uRnJlcSkgPC0gYygiRG9jVHlwZSIsICJUcmFuc2FjdGlvblR5cGUiLCAiY291bnQiKQ0KRG9jVHJhbnNhY3Rpb25GcmVxIDwtIGFycmFuZ2UoRG9jVHJhbnNhY3Rpb25GcmVxLCBkZXNjKGNvdW50KSkNCkRvY1RyYW5zYWN0aW9uRnJlcQ0KYGBgDQoNCiMjIyMjRG9jIFR5cGUgSGlnaCBDb3VudA0KKiA5MyA9IFN0YW5kYWxvbmUgTW9ydGdhZ2UNCiogNDAgPSBJbnRyYWZhbWlseSBUcmFuc2ZlciBhbmQgRGlzc29sdXRpb24NCiogMzYgPSBHcmFudCBEZWVkDQoqIDI3ID0gRGVlZA0KKiA1NSA9IFF1aXQgQ2xhaW0gRGVlZA0KKiAyOSA9IEFmZmlkYXZpdCBvZiBEZWF0aCBvZiBKb2luIFRlbmFudA0KKiA1MiA9IFB1YmxpYyBBY3Rpb24gLSBDb21tb24gaW4gRmxvcmlkYSAoQ2xlcmtzIFRheCBEZWVkIG9yIFRheCBEZWVkcyBvciBQcm9wZXJ0eSBzb2xkIGZvciBUYXhlcykNCmBgYHtyfQ0KZG9jSGlnaENvdW50IDwtIGRmLjA2MDcxX2RlZWQgJT4lDQogIHNlbGVjdChET0NVTUVOVFRZUEUpICU+JQ0KICBmaWx0ZXIoRE9DVU1FTlRUWVBFID09ICI5MyIgfCBET0NVTUVOVFRZUEUgPT0gIjM2IiB8IERPQ1VNRU5UVFlQRSA9PSAiNDAiIHwgRE9DVU1FTlRUWVBFID09ICIyNyIgfCBET0NVTUVOVFRZUEUgPT0gIjU1IiB8IERPQ1VNRU5UVFlQRSA9PSAiMjkiIHwgRE9DVU1FTlRUWVBFID09ICI1MiIpDQpwbG90LkRvY1R5cGVIaWdoQ291bnQgPC0gZ2dwbG90KGRvY0hpZ2hDb3VudCwgYWVzKERPQ1VNRU5UVFlQRSksIG9wdGlvbnMoc2NpcGVuID0gMTAwMCkpDQpwbG90LkRvY1R5cGVIaWdoQ291bnQgKyBnZW9tX2JhcigpICsgbGFicyh0aXRsZT0iRG9jdW1lbnQgVHlwZSAtIEhpZ2ggQ291bnQiKQ0KYGBgDQoNCg0KIyMjIyNEb2MgVHlwZSBNaWQgQ291bnQNCmBgYHtyfQ0KZG9jTWlkQ291bnQgPC0gZGYuMDYwNzFfZGVlZCAlPiUNCiAgc2VsZWN0KERPQ1VNRU5UVFlQRSkgJT4lDQogIGZpbHRlcihET0NVTUVOVFRZUEUgPT0gIjY5IiB8IERPQ1VNRU5UVFlQRSA9PSAiMjEiIHwgRE9DVU1FTlRUWVBFID09ICIyMCIgfCBET0NVTUVOVFRZUEUgPT0gIjM3IiB8IERPQ1VNRU5UVFlQRSA9PSAiNjEiIHwgRE9DVU1FTlRUWVBFID09ICIzOSIgfCBET0NVTUVOVFRZUEUgPT0gIjcxIiB8IERPQ1VNRU5UVFlQRSA9PSAiMzAiKQ0KcGxvdC5Eb2NUeXBlTWlkQ291bnQgPC0gZ2dwbG90KGRvY01pZENvdW50LCBhZXMoRE9DVU1FTlRUWVBFKSwgb3B0aW9ucyhzY2lwZW4gPSAxMDAwKSkNCnBsb3QuRG9jVHlwZU1pZENvdW50ICsgZ2VvbV9iYXIoKSArIGxhYnModGl0bGU9IkRvY3VtZW50IFR5cGUgLSBNaWQgQ291bnQiKQ0KYGBgDQo=