This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
# Load packages for analysis and this section will have all the required libraries mentioned for better clarity
library('ggplot2') # visualization
## Warning: package 'ggplot2' was built under R version 3.4.1
library('car') # visualization
## Warning: package 'car' was built under R version 3.4.2
library('scales') # visualization
## Warning: package 'scales' was built under R version 3.4.3
library('dplyr') # data manipulation
## Warning: package 'dplyr' was built under R version 3.4.2
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# library('mice') # imputation
# library('randomForest') # classification algorithm
# library('rpart') # for decision tree
# library('tidyr')
# library('ROCR')
# library('randomForest')
# library('corrr')
# library('corrplot')
# library('glue')
# library('caTools')
# library('data.table')
# require("GGally")
# require("geosphere")
# require("gmapsdistance")
require("tidyr")
## Loading required package: tidyr
## Warning: package 'tidyr' was built under R version 3.4.3
library('corrplot')
## Warning: package 'corrplot' was built under R version 3.4.2
## corrplot 0.84 loaded
#source("distance.R")
library('car')
library('caret')
## Warning: package 'caret' was built under R version 3.4.3
## Loading required package: lattice
library('purrr')
## Warning: package 'purrr' was built under R version 3.4.3
##
## Attaching package: 'purrr'
## The following object is masked from 'package:caret':
##
## lift
## The following object is masked from 'package:scales':
##
## discard
## The following object is masked from 'package:car':
##
## some
library('coefplot')
## Warning: package 'coefplot' was built under R version 3.4.4
library('psych')
## Warning: package 'psych' was built under R version 3.4.2
##
## Attaching package: 'psych'
## The following objects are masked from 'package:scales':
##
## alpha, rescale
## The following object is masked from 'package:car':
##
## logit
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library('MASS')
## Warning: package 'MASS' was built under R version 3.4.3
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
library('leaflet.extras')
## Warning: package 'leaflet.extras' was built under R version 3.4.1
## Loading required package: leaflet
## Warning: package 'leaflet' was built under R version 3.4.1
library("PerformanceAnalytics")
## Warning: package 'PerformanceAnalytics' was built under R version 3.4.4
## Loading required package: xts
## Warning: package 'xts' was built under R version 3.4.4
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.4.3
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following object is masked from 'package:leaflet':
##
## addLegend
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
library('GPArotation')
## Warning: package 'GPArotation' was built under R version 3.4.1
library('MVN')
## Warning: package 'MVN' was built under R version 3.4.3
## sROC 0.1-2 loaded
library('psych')
library('MASS')
library('psy')
## Warning: package 'psy' was built under R version 3.4.1
##
## Attaching package: 'psy'
## The following object is masked from 'package:psych':
##
## wkappa
library('corpcor')
## Warning: package 'corpcor' was built under R version 3.4.1
library('fastmatch')
## Warning: package 'fastmatch' was built under R version 3.4.1
##
## Attaching package: 'fastmatch'
## The following object is masked from 'package:dplyr':
##
## coalesce
library('plyr')
## Warning: package 'plyr' was built under R version 3.4.1
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following object is masked from 'package:purrr':
##
## compact
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
library('car')
library("PerformanceAnalytics")
library('ggcorrplot')
## Warning: package 'ggcorrplot' was built under R version 3.4.2
library('cluster')
## Warning: package 'cluster' was built under R version 3.4.2
library('caTools')
## Warning: package 'caTools' was built under R version 3.4.1
# library('InformationValue')
library('rpart.plot')
## Warning: package 'rpart.plot' was built under R version 3.4.3
## Loading required package: rpart
## Warning: package 'rpart' was built under R version 3.4.4
library('ggplot2')
library('RColorBrewer')
## Warning: package 'RColorBrewer' was built under R version 3.4.1
# library('data.table')
# library('ROCR')
# library('maptree')
# library('tree')
library('dummies') # for converting categorical into dummy one
## Warning: package 'dummies' was built under R version 3.4.1
## dummies-1.5.6 provided by Decision Patterns
library('caret')
library('pscl') ## for McFadden R2
## Warning: package 'pscl' was built under R version 3.4.3
## Classes and Methods for R developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University
## Simon Jackman
## hurdle and zeroinfl functions by Achim Zeileis
# library('randomForest')
library('StatMeasures')
## Warning: package 'StatMeasures' was built under R version 3.4.3
library('sqldf')
## Warning: package 'sqldf' was built under R version 3.4.3
## Loading required package: gsubfn
## Warning: package 'gsubfn' was built under R version 3.4.4
## Loading required package: proto
## Warning: package 'proto' was built under R version 3.4.1
## Loading required package: RSQLite
## Warning: package 'RSQLite' was built under R version 3.4.1
library('purrr')
library('tidyr')
library('caret')
library('ggplot2')
library('gains')
## Warning: package 'gains' was built under R version 3.4.1
library('lubridate')
## Warning: package 'lubridate' was built under R version 3.4.3
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:plyr':
##
## here
## The following object is masked from 'package:base':
##
## date
library('dummies')
library('glmnet')
## Warning: package 'glmnet' was built under R version 3.4.4
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.4.2
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
## expand
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.4.3
##
## Attaching package: 'foreach'
## The following objects are masked from 'package:purrr':
##
## accumulate, when
## Loaded glmnet 2.0-13
##
## Attaching package: 'glmnet'
## The following object is masked from 'package:StatMeasures':
##
## auc
Following are the data files we have and have summarized below understanding
Data File Name: intime Obsaervations: Each of the column name is the date and then for each column we have the in-time which is a date tome column. Here our primary key is the student id
Data File Name: employee_survery_data Observation: Here our primary key is student id. We have employee satisfaction data here
Data File Name: Outtime Obsaervations: Each of the column name is the date and then for each column we have the out-time which is a date time column. Here our primary key is the student id
Data File Name: general_data Obsaervations: Here our primary key is student Id and against id, we have all the values
employee_intime <- read.csv('in_time.csv', stringsAsFactors = FALSE)
employee_outtime <- read.csv('out_time.csv')
employee_survey <- read.csv('employee_survey_data.csv')
employee_general <- read.csv('general_data.csv')
manager_survery <- read.csv('manager_survey_data.csv')
# summary(employee_intime)
# summary(employee_outtime)
summary(employee_survey)
## EmployeeID EnvironmentSatisfaction JobSatisfaction WorkLifeBalance
## Min. : 1 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1103 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000
## Median :2206 Median :3.000 Median :3.000 Median :3.000
## Mean :2206 Mean :2.724 Mean :2.728 Mean :2.761
## 3rd Qu.:3308 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:3.000
## Max. :4410 Max. :4.000 Max. :4.000 Max. :4.000
## NA's :25 NA's :20 NA's :38
summary(employee_general)
## Age Attrition BusinessTravel
## Min. :18.00 No :3699 Non-Travel : 450
## 1st Qu.:30.00 Yes: 711 Travel_Frequently: 831
## Median :36.00 Travel_Rarely :3129
## Mean :36.92
## 3rd Qu.:43.00
## Max. :60.00
##
## Department DistanceFromHome Education
## Human Resources : 189 Min. : 1.000 Min. :1.000
## Research & Development:2883 1st Qu.: 2.000 1st Qu.:2.000
## Sales :1338 Median : 7.000 Median :3.000
## Mean : 9.193 Mean :2.913
## 3rd Qu.:14.000 3rd Qu.:4.000
## Max. :29.000 Max. :5.000
##
## EducationField EmployeeCount EmployeeID Gender
## Human Resources : 81 Min. :1 Min. : 1 Female:1764
## Life Sciences :1818 1st Qu.:1 1st Qu.:1103 Male :2646
## Marketing : 477 Median :1 Median :2206
## Medical :1392 Mean :1 Mean :2206
## Other : 246 3rd Qu.:1 3rd Qu.:3308
## Technical Degree: 396 Max. :1 Max. :4410
##
## JobLevel JobRole MaritalStatus
## Min. :1.000 Sales Executive :978 Divorced: 981
## 1st Qu.:1.000 Research Scientist :876 Married :2019
## Median :2.000 Laboratory Technician :777 Single :1410
## Mean :2.064 Manufacturing Director :435
## 3rd Qu.:3.000 Healthcare Representative:393
## Max. :5.000 Manager :306
## (Other) :645
## MonthlyIncome NumCompaniesWorked Over18 PercentSalaryHike
## Min. : 10090 Min. :0.000 Y:4410 Min. :11.00
## 1st Qu.: 29110 1st Qu.:1.000 1st Qu.:12.00
## Median : 49190 Median :2.000 Median :14.00
## Mean : 65029 Mean :2.695 Mean :15.21
## 3rd Qu.: 83800 3rd Qu.:4.000 3rd Qu.:18.00
## Max. :199990 Max. :9.000 Max. :25.00
## NA's :19
## StandardHours StockOptionLevel TotalWorkingYears TrainingTimesLastYear
## Min. :8 Min. :0.0000 Min. : 0.00 Min. :0.000
## 1st Qu.:8 1st Qu.:0.0000 1st Qu.: 6.00 1st Qu.:2.000
## Median :8 Median :1.0000 Median :10.00 Median :3.000
## Mean :8 Mean :0.7939 Mean :11.28 Mean :2.799
## 3rd Qu.:8 3rd Qu.:1.0000 3rd Qu.:15.00 3rd Qu.:3.000
## Max. :8 Max. :3.0000 Max. :40.00 Max. :6.000
## NA's :9
## YearsAtCompany YearsSinceLastPromotion YearsWithCurrManager
## Min. : 0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.: 3.000 1st Qu.: 0.000 1st Qu.: 2.000
## Median : 5.000 Median : 1.000 Median : 3.000
## Mean : 7.008 Mean : 2.188 Mean : 4.123
## 3rd Qu.: 9.000 3rd Qu.: 3.000 3rd Qu.: 7.000
## Max. :40.000 Max. :15.000 Max. :17.000
##
First step of our data transformation will be to streamline in-time and out-time. As part of our data transformation, we will merge merge employee_general and employee_survey by employee id.
Our next step of data transformation is to merge the in-time and out-time based on student id. But here the catch is that the date is the column heading.. So we will calculate the daily time as long they stayed in office and then weekly average hours they sent in office. We have initially converted excluded the Employee Id columns and have converted all other columns into date. Next we need to find out how we calculate daily hours spent in office.
nrow(employee_general)
## [1] 4410
consolidated_employee <- merge(employee_general,employee_survey, by='EmployeeID')
consolidated_employee <- merge(consolidated_employee,manager_survery, by='EmployeeID')
nrow(consolidated_employee)
## [1] 4410
ncol(employee_intime)
## [1] 262
employee_intime[, 2:261] <- sapply(employee_intime[, 2:261], strptime, format = "%Y-%m-%d %H:%M:%S")
employee_outtime[, 2:261] <- sapply(employee_outtime[, 2:261], strptime, format = "%Y-%m-%d %H:%M:%S")
employee_atttendance_details <- employee_outtime[, 2:261] - employee_intime[, 2:261]
# as.numeric(employee_atttendance_details[, 1:260], units="hours")
employee_atttendance_details[, 1:260] <- sapply(employee_atttendance_details[, 1:260] , as.numeric, units = "hours")
ncol(employee_atttendance_details)
## [1] 260
employee_atttendance_details$office_duration=rowMeans(employee_atttendance_details[,1:260], na.rm=TRUE)
employee_atttendance_sumamry <- as.data.frame(cbind(employee_intime$X, employee_atttendance_details$office_duration))
Our next step will be to merge employee_atttendance_details and employee_general. We only need to take office_duration from attendance data as of now.
names(employee_atttendance_sumamry)[names(employee_atttendance_sumamry) == 'V1'] <- 'EmployeeID'
names(employee_atttendance_sumamry)[names(employee_atttendance_sumamry) == 'V2'] <- 'OfficeAvgduration'
consolidated_employee <- merge(consolidated_employee,employee_atttendance_sumamry, by='EmployeeID')
## now drop
Density plot will help us to understand the data distribution pattern
consolidated_employee_backup <- consolidated_employee ## taking a backup here
consolidated_employee %>%
keep(is.numeric) %>% # Keep only numeric columns
gather() %>% # Convert to key-value pairs
ggplot(aes(value)) + # Plot the values
facet_wrap(~ key, scales = "free") + # In separate panels
geom_density() # as density
## Warning: Removed 111 rows containing non-finite values (stat_density).
### Doing the histogram here
consolidated_employee %>%
keep(is.numeric) %>%
gather() %>%
ggplot(aes(value)) +
facet_wrap(~ key, scales = "free") +
geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 111 rows containing non-finite values (stat_bin).
## Doing the boxplot here
dk <- c(1,14)
boxplot(subset(consolidated_employee, select = -dk), las = 2)
p<-ggplot(consolidated_employee, aes(subset(consolidated_employee, select = -dk),color=Gender, fill=Department)) + geom_boxplot()
Now we have the consolidated data and lets do basic plotting to understanding their relationship. Our result column is Attrition. Dummy variable conversion rules… # Attrition: Our priority is to prevent attrition and hene we will set Attrition as 1 and No Attrition as 0. Key observation here is that data is biassed towards “No Attrition” We will use the dummies package for converting into dummy variable. Some of the variables which are having level encoding is being corrected below so that dummy variables can be developped later, Otherwise model will assume than as numeric value.
str(consolidated_employee)
## 'data.frame': 4410 obs. of 30 variables:
## $ EmployeeID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Age : int 51 31 32 38 32 46 28 29 31 25 ...
## $ Attrition : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 2 1 1 1 ...
## $ BusinessTravel : Factor w/ 3 levels "Non-Travel","Travel_Frequently",..: 3 2 2 1 3 3 3 3 3 1 ...
## $ Department : Factor w/ 3 levels "Human Resources",..: 3 2 2 2 2 2 2 2 2 2 ...
## $ DistanceFromHome : int 6 10 17 2 10 8 11 18 1 7 ...
## $ Education : int 2 1 4 5 1 3 2 3 3 4 ...
## $ EducationField : Factor w/ 6 levels "Human Resources",..: 2 2 5 2 4 2 4 2 2 4 ...
## $ EmployeeCount : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Gender : Factor w/ 2 levels "Female","Male": 1 1 2 2 2 1 2 2 2 1 ...
## $ JobLevel : int 1 1 4 3 1 4 2 2 3 4 ...
## $ JobRole : Factor w/ 9 levels "Healthcare Representative",..: 1 7 8 2 8 6 8 8 3 3 ...
## $ MaritalStatus : Factor w/ 3 levels "Divorced","Married",..: 2 3 2 2 3 2 3 2 2 1 ...
## $ MonthlyIncome : int 131160 41890 193280 83210 23420 40710 58130 31430 20440 134640 ...
## $ NumCompaniesWorked : int 1 0 1 3 4 3 2 2 0 1 ...
## $ Over18 : Factor w/ 1 level "Y": 1 1 1 1 1 1 1 1 1 1 ...
## $ PercentSalaryHike : int 11 23 15 11 12 13 20 22 21 13 ...
## $ StandardHours : int 8 8 8 8 8 8 8 8 8 8 ...
## $ StockOptionLevel : int 0 1 3 3 2 0 1 3 0 1 ...
## $ TotalWorkingYears : int 1 6 5 13 9 28 5 10 10 6 ...
## $ TrainingTimesLastYear : int 6 3 2 5 2 5 2 2 2 2 ...
## $ YearsAtCompany : int 1 5 5 8 6 7 0 0 9 6 ...
## $ YearsSinceLastPromotion: int 0 1 0 7 0 7 0 0 7 1 ...
## $ YearsWithCurrManager : int 0 4 3 5 4 7 0 0 8 5 ...
## $ EnvironmentSatisfaction: int 3 3 2 4 4 3 1 1 2 2 ...
## $ JobSatisfaction : int 4 2 2 4 1 2 3 2 4 1 ...
## $ WorkLifeBalance : int 2 4 1 3 3 2 1 3 3 3 ...
## $ JobInvolvement : int 3 2 3 2 3 3 3 3 3 3 ...
## $ PerformanceRating : int 3 4 3 3 3 3 4 4 4 3 ...
## $ OfficeAvgduration : num 7.37 7.72 7.01 7.19 8.01 ...
##Attrition
consolidated_employee$Attrition <- ifelse(consolidated_employee$Attrition == "Yes",1,0)
table(consolidated_employee$Attrition)
##
## 0 1
## 3699 711
##Job satisfaction transformation
consolidated_employee$JobSatisfaction[consolidated_employee$JobSatisfaction==1] <- 'Low'
consolidated_employee$JobSatisfaction[consolidated_employee$JobSatisfaction==2] <- 'Medium'
consolidated_employee$JobSatisfaction[consolidated_employee$JobSatisfaction==3] <- 'High'
consolidated_employee$JobSatisfaction[consolidated_employee$JobSatisfaction==4] <- 'VeryHigh'
##Performance Rating transformation
consolidated_employee$PerformanceRating[consolidated_employee$PerformanceRating==1] <- 'Low'
consolidated_employee$PerformanceRating[consolidated_employee$PerformanceRating==2] <- 'Good'
consolidated_employee$PerformanceRating[consolidated_employee$PerformanceRating==3] <- 'Excellent'
consolidated_employee$PerformanceRating[consolidated_employee$PerformanceRating==4] <- 'Outstanding'
### Job Involvement transformation
consolidated_employee$JobInvolvement[consolidated_employee$JobInvolvement==1] <- 'Low'
consolidated_employee$JobInvolvement[consolidated_employee$JobInvolvement==2] <- 'Medium'
consolidated_employee$JobInvolvement[consolidated_employee$JobInvolvement==3] <- 'High'
consolidated_employee$JobInvolvement[consolidated_employee$JobInvolvement==4] <- 'VeryHigh'
### Education transformation
consolidated_employee$Education[consolidated_employee$Education==1] <- 'BelowCollege'
consolidated_employee$Education[consolidated_employee$Education==2] <- 'College'
consolidated_employee$Education[consolidated_employee$Education==3] <- 'Bachelor'
consolidated_employee$Education[consolidated_employee$Education==4] <- 'Master'
consolidated_employee$Education[consolidated_employee$Education==5] <- 'Doctor'
### worklife balance transformation
consolidated_employee$WorkLifeBalance[consolidated_employee$WorkLifeBalance==1] <- 'Bad'
consolidated_employee$WorkLifeBalance[consolidated_employee$WorkLifeBalance==2] <- 'Good'
consolidated_employee$WorkLifeBalance[consolidated_employee$WorkLifeBalance==3] <- 'Better'
consolidated_employee$WorkLifeBalance[consolidated_employee$WorkLifeBalance==4] <- 'Best'
consolidated_employee <- dummy.data.frame(consolidated_employee[,-1], sep = ".")
str(consolidated_employee)
## 'data.frame': 4410 obs. of 64 variables:
## $ Age : int 51 31 32 38 32 46 28 29 31 25 ...
## $ Attrition : num 0 1 0 0 0 0 1 0 0 0 ...
## $ BusinessTravel.Non-Travel : int 0 0 0 1 0 0 0 0 0 1 ...
## $ BusinessTravel.Travel_Frequently : int 0 1 1 0 0 0 0 0 0 0 ...
## $ BusinessTravel.Travel_Rarely : int 1 0 0 0 1 1 1 1 1 0 ...
## $ Department.Human Resources : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Department.Research & Development: int 0 1 1 1 1 1 1 1 1 1 ...
## $ Department.Sales : int 1 0 0 0 0 0 0 0 0 0 ...
## $ DistanceFromHome : int 6 10 17 2 10 8 11 18 1 7 ...
## $ Education.Bachelor : int 0 0 0 0 0 1 0 1 1 0 ...
## $ Education.BelowCollege : int 0 1 0 0 1 0 0 0 0 0 ...
## $ Education.College : int 1 0 0 0 0 0 1 0 0 0 ...
## $ Education.Doctor : int 0 0 0 1 0 0 0 0 0 0 ...
## $ Education.Master : int 0 0 1 0 0 0 0 0 0 1 ...
## $ EducationField.Human Resources : int 0 0 0 0 0 0 0 0 0 0 ...
## $ EducationField.Life Sciences : int 1 1 0 1 0 1 0 1 1 0 ...
## $ EducationField.Marketing : int 0 0 0 0 0 0 0 0 0 0 ...
## $ EducationField.Medical : int 0 0 0 0 1 0 1 0 0 1 ...
## $ EducationField.Other : int 0 0 1 0 0 0 0 0 0 0 ...
## $ EducationField.Technical Degree : int 0 0 0 0 0 0 0 0 0 0 ...
## $ EmployeeCount : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Gender.Female : int 1 1 0 0 0 1 0 0 0 1 ...
## $ Gender.Male : int 0 0 1 1 1 0 1 1 1 0 ...
## $ JobLevel : int 1 1 4 3 1 4 2 2 3 4 ...
## $ JobRole.Healthcare Representative: int 1 0 0 0 0 0 0 0 0 0 ...
## $ JobRole.Human Resources : int 0 0 0 1 0 0 0 0 0 0 ...
## $ JobRole.Laboratory Technician : int 0 0 0 0 0 0 0 0 1 1 ...
## $ JobRole.Manager : int 0 0 0 0 0 0 0 0 0 0 ...
## $ JobRole.Manufacturing Director : int 0 0 0 0 0 0 0 0 0 0 ...
## $ JobRole.Research Director : int 0 0 0 0 0 1 0 0 0 0 ...
## $ JobRole.Research Scientist : int 0 1 0 0 0 0 0 0 0 0 ...
## $ JobRole.Sales Executive : int 0 0 1 0 1 0 1 1 0 0 ...
## $ JobRole.Sales Representative : int 0 0 0 0 0 0 0 0 0 0 ...
## $ MaritalStatus.Divorced : int 0 0 0 0 0 0 0 0 0 1 ...
## $ MaritalStatus.Married : int 1 0 1 1 0 1 0 1 1 0 ...
## $ MaritalStatus.Single : int 0 1 0 0 1 0 1 0 0 0 ...
## $ MonthlyIncome : int 131160 41890 193280 83210 23420 40710 58130 31430 20440 134640 ...
## $ NumCompaniesWorked : int 1 0 1 3 4 3 2 2 0 1 ...
## $ PercentSalaryHike : int 11 23 15 11 12 13 20 22 21 13 ...
## $ StandardHours : int 8 8 8 8 8 8 8 8 8 8 ...
## $ StockOptionLevel : int 0 1 3 3 2 0 1 3 0 1 ...
## $ TotalWorkingYears : int 1 6 5 13 9 28 5 10 10 6 ...
## $ TrainingTimesLastYear : int 6 3 2 5 2 5 2 2 2 2 ...
## $ YearsAtCompany : int 1 5 5 8 6 7 0 0 9 6 ...
## $ YearsSinceLastPromotion : int 0 1 0 7 0 7 0 0 7 1 ...
## $ YearsWithCurrManager : int 0 4 3 5 4 7 0 0 8 5 ...
## $ EnvironmentSatisfaction : int 3 3 2 4 4 3 1 1 2 2 ...
## $ JobSatisfaction.High : int 0 0 0 0 0 0 1 0 0 0 ...
## $ JobSatisfaction.Low : int 0 0 0 0 1 0 0 0 0 1 ...
## $ JobSatisfaction.Medium : int 0 1 1 0 0 1 0 1 0 0 ...
## $ JobSatisfaction.VeryHigh : int 1 0 0 1 0 0 0 0 1 0 ...
## $ JobSatisfaction.NA : int 0 0 0 0 0 0 0 0 0 0 ...
## $ WorkLifeBalance.Bad : int 0 0 1 0 0 0 1 0 0 0 ...
## $ WorkLifeBalance.Best : int 0 1 0 0 0 0 0 0 0 0 ...
## $ WorkLifeBalance.Better : int 0 0 0 1 1 0 0 1 1 1 ...
## $ WorkLifeBalance.Good : int 1 0 0 0 0 1 0 0 0 0 ...
## $ WorkLifeBalance.NA : int 0 0 0 0 0 0 0 0 0 0 ...
## $ JobInvolvement.High : int 1 0 1 0 1 1 1 1 1 1 ...
## $ JobInvolvement.Low : int 0 0 0 0 0 0 0 0 0 0 ...
## $ JobInvolvement.Medium : int 0 1 0 1 0 0 0 0 0 0 ...
## $ JobInvolvement.VeryHigh : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PerformanceRating.Excellent : int 1 0 1 1 1 1 0 0 0 1 ...
## $ PerformanceRating.Outstanding : int 0 1 0 0 0 0 1 1 1 0 ...
## $ OfficeAvgduration : num 7.37 7.72 7.01 7.19 8.01 ...
## - attr(*, "dummies")=List of 11
## ..$ BusinessTravel : int 3 4 5
## ..$ Department : int 6 7 8
## ..$ Education : int 10 11 12 13 14
## ..$ EducationField : int 15 16 17 18 19 20
## ..$ Gender : int 22 23
## ..$ JobRole : int 25 26 27 28 29 30 31 32 33
## ..$ MaritalStatus : int 34 35 36
## ..$ JobSatisfaction : int 48 49 50 51 52
## ..$ WorkLifeBalance : int 53 54 55 56 57
## ..$ JobInvolvement : int 58 59 60 61
## ..$ PerformanceRating: int 62 63
summary(consolidated_employee)
## Age Attrition BusinessTravel.Non-Travel
## Min. :18.00 Min. :0.0000 Min. :0.000
## 1st Qu.:30.00 1st Qu.:0.0000 1st Qu.:0.000
## Median :36.00 Median :0.0000 Median :0.000
## Mean :36.92 Mean :0.1612 Mean :0.102
## 3rd Qu.:43.00 3rd Qu.:0.0000 3rd Qu.:0.000
## Max. :60.00 Max. :1.0000 Max. :1.000
##
## BusinessTravel.Travel_Frequently BusinessTravel.Travel_Rarely
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :1.0000
## Mean :0.1884 Mean :0.7095
## 3rd Qu.:0.0000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.0000
##
## Department.Human Resources Department.Research & Development
## Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000
## Median :0.00000 Median :1.0000
## Mean :0.04286 Mean :0.6537
## 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.00000 Max. :1.0000
##
## Department.Sales DistanceFromHome Education.Bachelor
## Min. :0.0000 Min. : 1.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.: 2.000 1st Qu.:0.0000
## Median :0.0000 Median : 7.000 Median :0.0000
## Mean :0.3034 Mean : 9.193 Mean :0.3891
## 3rd Qu.:1.0000 3rd Qu.:14.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :29.000 Max. :1.0000
##
## Education.BelowCollege Education.College Education.Doctor
## Min. :0.0000 Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.0000 Median :0.00000
## Mean :0.1156 Mean :0.1918 Mean :0.03265
## 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.0000 Max. :1.00000
##
## Education.Master EducationField.Human Resources
## Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000
## Mean :0.2707 Mean :0.01837
## 3rd Qu.:1.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000
##
## EducationField.Life Sciences EducationField.Marketing
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000
## Mean :0.4122 Mean :0.1082
## 3rd Qu.:1.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000
##
## EducationField.Medical EducationField.Other
## Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000
## Mean :0.3156 Mean :0.05578
## 3rd Qu.:1.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000
##
## EducationField.Technical Degree EmployeeCount Gender.Female Gender.Male
## Min. :0.0000 Min. :1 Min. :0.0 Min. :0.0
## 1st Qu.:0.0000 1st Qu.:1 1st Qu.:0.0 1st Qu.:0.0
## Median :0.0000 Median :1 Median :0.0 Median :1.0
## Mean :0.0898 Mean :1 Mean :0.4 Mean :0.6
## 3rd Qu.:0.0000 3rd Qu.:1 3rd Qu.:1.0 3rd Qu.:1.0
## Max. :1.0000 Max. :1 Max. :1.0 Max. :1.0
##
## JobLevel JobRole.Healthcare Representative JobRole.Human Resources
## Min. :1.000 Min. :0.00000 Min. :0.00000
## 1st Qu.:1.000 1st Qu.:0.00000 1st Qu.:0.00000
## Median :2.000 Median :0.00000 Median :0.00000
## Mean :2.064 Mean :0.08912 Mean :0.03537
## 3rd Qu.:3.000 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :5.000 Max. :1.00000 Max. :1.00000
##
## JobRole.Laboratory Technician JobRole.Manager
## Min. :0.0000 Min. :0.00000
## 1st Qu.:0.0000 1st Qu.:0.00000
## Median :0.0000 Median :0.00000
## Mean :0.1762 Mean :0.06939
## 3rd Qu.:0.0000 3rd Qu.:0.00000
## Max. :1.0000 Max. :1.00000
##
## JobRole.Manufacturing Director JobRole.Research Director
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000
## Mean :0.09864 Mean :0.05442
## 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :1.00000 Max. :1.00000
##
## JobRole.Research Scientist JobRole.Sales Executive
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000
## Mean :0.1986 Mean :0.2218
## 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.0000 Max. :1.0000
##
## JobRole.Sales Representative MaritalStatus.Divorced MaritalStatus.Married
## Min. :0.00000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.00000 Median :0.0000 Median :0.0000
## Mean :0.05646 Mean :0.2224 Mean :0.4578
## 3rd Qu.:0.00000 3rd Qu.:0.0000 3rd Qu.:1.0000
## Max. :1.00000 Max. :1.0000 Max. :1.0000
##
## MaritalStatus.Single MonthlyIncome NumCompaniesWorked
## Min. :0.0000 Min. : 10090 Min. :0.000
## 1st Qu.:0.0000 1st Qu.: 29110 1st Qu.:1.000
## Median :0.0000 Median : 49190 Median :2.000
## Mean :0.3197 Mean : 65029 Mean :2.695
## 3rd Qu.:1.0000 3rd Qu.: 83800 3rd Qu.:4.000
## Max. :1.0000 Max. :199990 Max. :9.000
## NA's :19
## PercentSalaryHike StandardHours StockOptionLevel TotalWorkingYears
## Min. :11.00 Min. :8 Min. :0.0000 Min. : 0.00
## 1st Qu.:12.00 1st Qu.:8 1st Qu.:0.0000 1st Qu.: 6.00
## Median :14.00 Median :8 Median :1.0000 Median :10.00
## Mean :15.21 Mean :8 Mean :0.7939 Mean :11.28
## 3rd Qu.:18.00 3rd Qu.:8 3rd Qu.:1.0000 3rd Qu.:15.00
## Max. :25.00 Max. :8 Max. :3.0000 Max. :40.00
## NA's :9
## TrainingTimesLastYear YearsAtCompany YearsSinceLastPromotion
## Min. :0.000 Min. : 0.000 Min. : 0.000
## 1st Qu.:2.000 1st Qu.: 3.000 1st Qu.: 0.000
## Median :3.000 Median : 5.000 Median : 1.000
## Mean :2.799 Mean : 7.008 Mean : 2.188
## 3rd Qu.:3.000 3rd Qu.: 9.000 3rd Qu.: 3.000
## Max. :6.000 Max. :40.000 Max. :15.000
##
## YearsWithCurrManager EnvironmentSatisfaction JobSatisfaction.High
## Min. : 0.000 Min. :1.000 Min. :0.0
## 1st Qu.: 2.000 1st Qu.:2.000 1st Qu.:0.0
## Median : 3.000 Median :3.000 Median :0.0
## Mean : 4.123 Mean :2.724 Mean :0.3
## 3rd Qu.: 7.000 3rd Qu.:4.000 3rd Qu.:1.0
## Max. :17.000 Max. :4.000 Max. :1.0
## NA's :25
## JobSatisfaction.Low JobSatisfaction.Medium JobSatisfaction.VeryHigh
## Min. :0.000 Min. :0.0000 Min. :0.00
## 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.00
## Median :0.000 Median :0.0000 Median :0.00
## Mean :0.195 Mean :0.1905 Mean :0.31
## 3rd Qu.:0.000 3rd Qu.:0.0000 3rd Qu.:1.00
## Max. :1.000 Max. :1.0000 Max. :1.00
##
## JobSatisfaction.NA WorkLifeBalance.Bad WorkLifeBalance.Best
## Min. :0.000000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.000000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.000000 Median :0.0000 Median :0.0000
## Mean :0.004535 Mean :0.0542 Mean :0.1029
## 3rd Qu.:0.000000 3rd Qu.:0.0000 3rd Qu.:0.0000
## Max. :1.000000 Max. :1.0000 Max. :1.0000
##
## WorkLifeBalance.Better WorkLifeBalance.Good WorkLifeBalance.NA
## Min. :0.0000 Min. :0.0000 Min. :0.000000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.000000
## Median :1.0000 Median :0.0000 Median :0.000000
## Mean :0.6032 Mean :0.2311 Mean :0.008617
## 3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.000000
## Max. :1.0000 Max. :1.0000 Max. :1.000000
##
## JobInvolvement.High JobInvolvement.Low JobInvolvement.Medium
## Min. :0.0000 Min. :0.00000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.00000 1st Qu.:0.0000
## Median :1.0000 Median :0.00000 Median :0.0000
## Mean :0.5905 Mean :0.05646 Mean :0.2551
## 3rd Qu.:1.0000 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.0000 Max. :1.00000 Max. :1.0000
##
## JobInvolvement.VeryHigh PerformanceRating.Excellent
## Min. :0.00000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:1.0000
## Median :0.00000 Median :1.0000
## Mean :0.09796 Mean :0.8463
## 3rd Qu.:0.00000 3rd Qu.:1.0000
## Max. :1.00000 Max. :1.0000
##
## PerformanceRating.Outstanding OfficeAvgduration
## Min. :0.0000 Min. : 5.948
## 1st Qu.:0.0000 1st Qu.: 6.673
## Median :0.0000 Median : 7.407
## Mean :0.1537 Mean : 7.701
## 3rd Qu.:0.0000 3rd Qu.: 8.370
## Max. :1.0000 Max. :11.033
##
We will be doing the splitting here and then build the regression model
set.seed(34251)
pd_logit<-sample(2,nrow(consolidated_employee),replace=TRUE, prob=c(0.7,0.3))
consolidated_employee_regression_train<-consolidated_employee[pd_logit==1,]
consolidated_employee_regression_val<-consolidated_employee[pd_logit==2,]
nrow(consolidated_employee_regression_train)
## [1] 3071
nrow(consolidated_employee_regression_val)
## [1] 1339
reg_modelstudent <- glm(consolidated_employee_regression_train$Attrition ~.,family=binomial(link='logit'),data=consolidated_employee_regression_train)
summary(reg_modelstudent)
##
## Call:
## glm(formula = consolidated_employee_regression_train$Attrition ~
## ., family = binomial(link = "logit"), data = consolidated_employee_regression_train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.7921 -0.5428 -0.3347 -0.1611 3.6985
##
## Coefficients: (13 not defined because of singularities)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.906e+00 1.597e+00 -2.446 0.01445
## Age -2.766e-02 9.046e-03 -3.058 0.00223
## `BusinessTravel.Non-Travel` -4.955e-01 2.317e-01 -2.139 0.03244
## BusinessTravel.Travel_Frequently 8.849e-01 1.347e-01 6.568 5.09e-11
## BusinessTravel.Travel_Rarely NA NA NA NA
## `Department.Human Resources` 8.690e-01 3.539e-01 2.455 0.01408
## `Department.Research & Development` 6.279e-02 1.536e-01 0.409 0.68266
## Department.Sales NA NA NA NA
## DistanceFromHome -8.981e-04 7.351e-03 -0.122 0.90276
## Education.Bachelor 5.028e-02 1.449e-01 0.347 0.72857
## Education.BelowCollege 1.329e-01 2.105e-01 0.631 0.52783
## Education.College 2.368e-01 1.672e-01 1.417 0.15660
## Education.Doctor -7.350e-01 3.798e-01 -1.935 0.05294
## Education.Master NA NA NA NA
## `EducationField.Human Resources` 8.917e-01 5.164e-01 1.727 0.08421
## `EducationField.Life Sciences` 3.101e-01 2.329e-01 1.332 0.18297
## EducationField.Marketing 2.321e-01 2.911e-01 0.797 0.42537
## EducationField.Medical 3.155e-01 2.381e-01 1.325 0.18514
## EducationField.Other 1.569e-02 3.442e-01 0.046 0.96364
## `EducationField.Technical Degree` NA NA NA NA
## EmployeeCount NA NA NA NA
## Gender.Female -1.322e-01 1.198e-01 -1.104 0.26973
## Gender.Male NA NA NA NA
## JobLevel -5.492e-02 5.317e-02 -1.033 0.30167
## `JobRole.Healthcare Representative` 2.925e-01 3.205e-01 0.913 0.36134
## `JobRole.Human Resources` 1.721e-01 4.030e-01 0.427 0.66933
## `JobRole.Laboratory Technician` 4.845e-01 2.909e-01 1.666 0.09581
## JobRole.Manager 1.965e-01 3.456e-01 0.569 0.56961
## `JobRole.Manufacturing Director` -2.922e-01 3.312e-01 -0.882 0.37776
## `JobRole.Research Director` 8.908e-01 3.467e-01 2.570 0.01018
## `JobRole.Research Scientist` 6.330e-01 2.858e-01 2.215 0.02674
## `JobRole.Sales Executive` 7.517e-01 2.821e-01 2.665 0.00771
## `JobRole.Sales Representative` NA NA NA NA
## MaritalStatus.Divorced -1.191e+00 1.751e-01 -6.799 1.06e-11
## MaritalStatus.Married -9.643e-01 1.290e-01 -7.477 7.61e-14
## MaritalStatus.Single NA NA NA NA
## MonthlyIncome -1.290e-06 1.267e-06 -1.018 0.30851
## NumCompaniesWorked 1.180e-01 2.505e-02 4.712 2.45e-06
## PercentSalaryHike 3.905e-02 2.514e-02 1.553 0.12043
## StandardHours NA NA NA NA
## StockOptionLevel -8.333e-02 6.799e-02 -1.226 0.22036
## TotalWorkingYears -8.240e-02 1.649e-02 -4.996 5.85e-07
## TrainingTimesLastYear -1.398e-01 4.639e-02 -3.014 0.00258
## YearsAtCompany 3.003e-02 2.312e-02 1.299 0.19395
## YearsSinceLastPromotion 1.840e-01 2.620e-02 7.023 2.17e-12
## YearsWithCurrManager -1.797e-01 2.881e-02 -6.237 4.45e-10
## EnvironmentSatisfaction -3.192e-01 5.266e-02 -6.063 1.34e-09
## JobSatisfaction.High -1.256e-02 1.084e+00 -0.012 0.99076
## JobSatisfaction.Low 4.841e-01 1.086e+00 0.446 0.65585
## JobSatisfaction.Medium -4.733e-02 1.087e+00 -0.044 0.96526
## JobSatisfaction.VeryHigh -6.866e-01 1.087e+00 -0.632 0.52768
## JobSatisfaction.NA NA NA NA NA
## WorkLifeBalance.Bad 2.007e+00 8.170e-01 2.457 0.01403
## WorkLifeBalance.Best 8.566e-01 8.107e-01 1.057 0.29069
## WorkLifeBalance.Better 5.767e-01 7.959e-01 0.725 0.46869
## WorkLifeBalance.Good 1.014e+00 8.008e-01 1.267 0.20532
## WorkLifeBalance.NA NA NA NA NA
## JobInvolvement.High -2.559e-01 1.932e-01 -1.325 0.18526
## JobInvolvement.Low 2.862e-01 2.768e-01 1.034 0.30119
## JobInvolvement.Medium -1.174e-01 2.109e-01 -0.556 0.57790
## JobInvolvement.VeryHigh NA NA NA NA
## PerformanceRating.Excellent 1.981e-01 2.489e-01 0.796 0.42604
## PerformanceRating.Outstanding NA NA NA NA
## OfficeAvgduration 4.485e-01 4.103e-02 10.931 < 2e-16
##
## (Intercept) *
## Age **
## `BusinessTravel.Non-Travel` *
## BusinessTravel.Travel_Frequently ***
## BusinessTravel.Travel_Rarely
## `Department.Human Resources` *
## `Department.Research & Development`
## Department.Sales
## DistanceFromHome
## Education.Bachelor
## Education.BelowCollege
## Education.College
## Education.Doctor .
## Education.Master
## `EducationField.Human Resources` .
## `EducationField.Life Sciences`
## EducationField.Marketing
## EducationField.Medical
## EducationField.Other
## `EducationField.Technical Degree`
## EmployeeCount
## Gender.Female
## Gender.Male
## JobLevel
## `JobRole.Healthcare Representative`
## `JobRole.Human Resources`
## `JobRole.Laboratory Technician` .
## JobRole.Manager
## `JobRole.Manufacturing Director`
## `JobRole.Research Director` *
## `JobRole.Research Scientist` *
## `JobRole.Sales Executive` **
## `JobRole.Sales Representative`
## MaritalStatus.Divorced ***
## MaritalStatus.Married ***
## MaritalStatus.Single
## MonthlyIncome
## NumCompaniesWorked ***
## PercentSalaryHike
## StandardHours
## StockOptionLevel
## TotalWorkingYears ***
## TrainingTimesLastYear **
## YearsAtCompany
## YearsSinceLastPromotion ***
## YearsWithCurrManager ***
## EnvironmentSatisfaction ***
## JobSatisfaction.High
## JobSatisfaction.Low
## JobSatisfaction.Medium
## JobSatisfaction.VeryHigh
## JobSatisfaction.NA
## WorkLifeBalance.Bad *
## WorkLifeBalance.Best
## WorkLifeBalance.Better
## WorkLifeBalance.Good
## WorkLifeBalance.NA
## JobInvolvement.High
## JobInvolvement.Low
## JobInvolvement.Medium
## JobInvolvement.VeryHigh
## PerformanceRating.Excellent
## PerformanceRating.Outstanding
## OfficeAvgduration ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2673.8 on 3035 degrees of freedom
## Residual deviance: 2040.9 on 2985 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 2142.9
##
## Number of Fisher Scoring iterations: 6
stepAIC method will be used to finetune the model further
stepAIC(reg_modelstudent, direction='both', steps = 1000, trace=TRUE)
## Start: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StandardHours +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + JobSatisfaction.NA +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + WorkLifeBalance.NA + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + JobInvolvement.VeryHigh +
## PerformanceRating.Excellent + PerformanceRating.Outstanding +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StandardHours +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + JobSatisfaction.NA +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + WorkLifeBalance.NA + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + JobInvolvement.VeryHigh +
## PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StandardHours +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + JobSatisfaction.NA +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + WorkLifeBalance.NA + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StandardHours +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + JobSatisfaction.NA +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StandardHours +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MaritalStatus.Single + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.High + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## `JobRole.Sales Representative` + MaritalStatus.Divorced +
## MaritalStatus.Married + MonthlyIncome + NumCompaniesWorked +
## PercentSalaryHike + StockOptionLevel + TotalWorkingYears +
## TrainingTimesLastYear + YearsAtCompany + YearsSinceLastPromotion +
## YearsWithCurrManager + EnvironmentSatisfaction + JobSatisfaction.High +
## JobSatisfaction.Low + JobSatisfaction.Medium + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## Gender.Male + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.High + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + EmployeeCount + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## `EducationField.Technical Degree` + Gender.Female + JobLevel +
## `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## Education.Master + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.High + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## Department.Sales + DistanceFromHome + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.High + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + BusinessTravel.Travel_Rarely +
## `Department.Human Resources` + `Department.Research & Development` +
## DistanceFromHome + Education.Bachelor + Education.BelowCollege +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + EducationField.Other + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.High + JobSatisfaction.Low +
## JobSatisfaction.Medium + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
##
## Step: AIC=2142.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + DistanceFromHome +
## Education.Bachelor + Education.BelowCollege + Education.College +
## Education.Doctor + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.High + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
## Df Deviance AIC
## - JobSatisfaction.High 1 2040.9 2140.9
## - JobSatisfaction.Medium 1 2040.9 2140.9
## - EducationField.Other 1 2040.9 2140.9
## - DistanceFromHome 1 2040.9 2140.9
## - Education.Bachelor 1 2041.0 2141.0
## - `Department.Research & Development` 1 2041.1 2141.1
## - `JobRole.Human Resources` 1 2041.1 2141.1
## - JobSatisfaction.Low 1 2041.1 2141.1
## - JobInvolvement.Medium 1 2041.2 2141.2
## - JobRole.Manager 1 2041.2 2141.2
## - JobSatisfaction.VeryHigh 1 2041.2 2141.2
## - Education.BelowCollege 1 2041.3 2141.3
## - WorkLifeBalance.Better 1 2041.5 2141.5
## - PerformanceRating.Excellent 1 2041.5 2141.5
## - EducationField.Marketing 1 2041.5 2141.5
## - `JobRole.Manufacturing Director` 1 2041.7 2141.7
## - `JobRole.Healthcare Representative` 1 2041.8 2141.8
## - MonthlyIncome 1 2042.0 2141.9
## - JobInvolvement.Low 1 2042.0 2142.0
## - JobLevel 1 2042.0 2142.0
## - Gender.Female 1 2042.1 2142.1
## - WorkLifeBalance.Best 1 2042.2 2142.2
## - StockOptionLevel 1 2042.4 2142.4
## - YearsAtCompany 1 2042.6 2142.6
## - JobInvolvement.High 1 2042.6 2142.6
## - EducationField.Medical 1 2042.7 2142.7
## - `EducationField.Life Sciences` 1 2042.8 2142.8
## - WorkLifeBalance.Good 1 2042.9 2142.9
## <none> 2040.9 2142.9
## - Education.College 1 2042.9 2142.9
## - PercentSalaryHike 1 2043.3 2143.3
## - `JobRole.Laboratory Technician` 1 2043.8 2143.8
## - `EducationField.Human Resources` 1 2043.9 2143.9
## - Education.Doctor 1 2045.0 2145.0
## - `BusinessTravel.Non-Travel` 1 2045.8 2145.8
## - `JobRole.Research Scientist` 1 2046.1 2146.1
## - `Department.Human Resources` 1 2046.5 2146.5
## - `JobRole.Research Director` 1 2047.6 2147.6
## - `JobRole.Sales Executive` 1 2048.6 2148.6
## - WorkLifeBalance.Bad 1 2049.4 2149.4
## - TrainingTimesLastYear 1 2050.2 2150.2
## - Age 1 2050.6 2150.6
## - NumCompaniesWorked 1 2062.5 2162.5
## - TotalWorkingYears 1 2068.9 2168.9
## - EnvironmentSatisfaction 1 2078.3 2178.3
## - YearsWithCurrManager 1 2078.4 2178.4
## - BusinessTravel.Travel_Frequently 1 2082.9 2182.9
## - YearsSinceLastPromotion 1 2091.5 2191.5
## - MaritalStatus.Divorced 1 2092.1 2192.1
## - MaritalStatus.Married 1 2098.2 2198.2
## - OfficeAvgduration 1 2164.0 2264.0
##
## Step: AIC=2140.9
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + DistanceFromHome +
## Education.Bachelor + Education.BelowCollege + Education.College +
## Education.Doctor + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + EducationField.Other +
## Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.Medium + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - EducationField.Other 1 2040.9 2138.9
## - DistanceFromHome 1 2040.9 2138.9
## - JobSatisfaction.Medium 1 2041.0 2138.9
## - Education.Bachelor 1 2041.0 2139.0
## - `Department.Research & Development` 1 2041.1 2139.1
## - `JobRole.Human Resources` 1 2041.1 2139.1
## - JobInvolvement.Medium 1 2041.2 2139.2
## - JobRole.Manager 1 2041.2 2139.2
## - Education.BelowCollege 1 2041.3 2139.3
## - WorkLifeBalance.Better 1 2041.5 2139.5
## - PerformanceRating.Excellent 1 2041.5 2139.5
## - EducationField.Marketing 1 2041.5 2139.5
## - `JobRole.Manufacturing Director` 1 2041.7 2139.7
## - `JobRole.Healthcare Representative` 1 2041.8 2139.8
## - MonthlyIncome 1 2042.0 2139.9
## - JobInvolvement.Low 1 2042.0 2140.0
## - JobLevel 1 2042.0 2140.0
## - Gender.Female 1 2042.1 2140.1
## - WorkLifeBalance.Best 1 2042.2 2140.2
## - StockOptionLevel 1 2042.4 2140.4
## - YearsAtCompany 1 2042.6 2140.6
## - JobInvolvement.High 1 2042.6 2140.6
## - EducationField.Medical 1 2042.7 2140.7
## - `EducationField.Life Sciences` 1 2042.8 2140.8
## - WorkLifeBalance.Good 1 2042.9 2140.9
## <none> 2040.9 2140.9
## - Education.College 1 2042.9 2140.9
## - PercentSalaryHike 1 2043.3 2141.3
## - `JobRole.Laboratory Technician` 1 2043.8 2141.8
## - `EducationField.Human Resources` 1 2043.9 2141.9
## + JobSatisfaction.High 1 2040.9 2142.9
## + JobSatisfaction.NA 1 2040.9 2142.9
## - Education.Doctor 1 2045.0 2143.1
## - `BusinessTravel.Non-Travel` 1 2045.8 2143.8
## - `JobRole.Research Scientist` 1 2046.1 2144.1
## - `Department.Human Resources` 1 2046.5 2144.5
## - `JobRole.Research Director` 1 2047.6 2145.6
## - `JobRole.Sales Executive` 1 2048.6 2146.6
## - WorkLifeBalance.Bad 1 2049.4 2147.4
## - TrainingTimesLastYear 1 2050.2 2148.2
## - Age 1 2050.6 2148.6
## - JobSatisfaction.Low 1 2050.6 2148.6
## - JobSatisfaction.VeryHigh 1 2059.6 2157.6
## - NumCompaniesWorked 1 2062.5 2160.5
## - TotalWorkingYears 1 2068.9 2166.9
## - EnvironmentSatisfaction 1 2078.3 2176.3
## - YearsWithCurrManager 1 2078.4 2176.4
## - BusinessTravel.Travel_Frequently 1 2082.9 2180.9
## - YearsSinceLastPromotion 1 2091.5 2189.5
## - MaritalStatus.Divorced 1 2092.1 2190.1
## - MaritalStatus.Married 1 2098.2 2196.2
## - OfficeAvgduration 1 2164.0 2262.0
##
## Step: AIC=2138.91
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + DistanceFromHome +
## Education.Bachelor + Education.BelowCollege + Education.College +
## Education.Doctor + `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
## Df Deviance AIC
## - DistanceFromHome 1 2040.9 2136.9
## - JobSatisfaction.Medium 1 2041.0 2136.9
## - Education.Bachelor 1 2041.0 2137.0
## - `Department.Research & Development` 1 2041.1 2137.1
## - `JobRole.Human Resources` 1 2041.1 2137.1
## - JobInvolvement.Medium 1 2041.2 2137.2
## - JobRole.Manager 1 2041.2 2137.2
## - Education.BelowCollege 1 2041.3 2137.3
## - WorkLifeBalance.Better 1 2041.5 2137.5
## - PerformanceRating.Excellent 1 2041.5 2137.5
## - EducationField.Marketing 1 2041.7 2137.7
## - `JobRole.Manufacturing Director` 1 2041.7 2137.7
## - `JobRole.Healthcare Representative` 1 2041.8 2137.8
## - MonthlyIncome 1 2042.0 2138.0
## - JobInvolvement.Low 1 2042.0 2138.0
## - JobLevel 1 2042.0 2138.0
## - Gender.Female 1 2042.1 2138.1
## - WorkLifeBalance.Best 1 2042.2 2138.2
## - StockOptionLevel 1 2042.4 2138.4
## - YearsAtCompany 1 2042.6 2138.6
## - JobInvolvement.High 1 2042.6 2138.6
## - WorkLifeBalance.Good 1 2042.9 2138.9
## <none> 2040.9 2138.9
## - Education.College 1 2042.9 2138.9
## - PercentSalaryHike 1 2043.3 2139.3
## - EducationField.Medical 1 2043.5 2139.5
## - `EducationField.Life Sciences` 1 2043.6 2139.6
## - `JobRole.Laboratory Technician` 1 2043.8 2139.8
## - `EducationField.Human Resources` 1 2044.1 2140.1
## + EducationField.Other 1 2040.9 2140.9
## + `EducationField.Technical Degree` 1 2040.9 2140.9
## + JobSatisfaction.High 1 2040.9 2140.9
## + JobSatisfaction.NA 1 2040.9 2140.9
## - Education.Doctor 1 2045.1 2141.1
## - `BusinessTravel.Non-Travel` 1 2045.9 2141.9
## - `JobRole.Research Scientist` 1 2046.1 2142.1
## - `Department.Human Resources` 1 2046.5 2142.5
## - `JobRole.Research Director` 1 2047.6 2143.6
## - `JobRole.Sales Executive` 1 2048.6 2144.6
## - WorkLifeBalance.Bad 1 2049.4 2145.4
## - TrainingTimesLastYear 1 2050.2 2146.2
## - Age 1 2050.6 2146.6
## - JobSatisfaction.Low 1 2050.6 2146.6
## - JobSatisfaction.VeryHigh 1 2059.6 2155.6
## - NumCompaniesWorked 1 2062.5 2158.5
## - TotalWorkingYears 1 2069.0 2165.0
## - EnvironmentSatisfaction 1 2078.4 2174.4
## - YearsWithCurrManager 1 2078.4 2174.4
## - BusinessTravel.Travel_Frequently 1 2083.2 2179.2
## - YearsSinceLastPromotion 1 2091.7 2187.7
## - MaritalStatus.Divorced 1 2092.2 2188.2
## - MaritalStatus.Married 1 2098.6 2194.6
## - OfficeAvgduration 1 2164.0 2260.0
##
## Step: AIC=2136.92
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.Medium +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Better + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + JobInvolvement.Medium + PerformanceRating.Excellent +
## OfficeAvgduration
##
## Df Deviance AIC
## - JobSatisfaction.Medium 1 2041.0 2135.0
## - Education.Bachelor 1 2041.0 2135.0
## - `Department.Research & Development` 1 2041.1 2135.1
## - `JobRole.Human Resources` 1 2041.1 2135.1
## - JobInvolvement.Medium 1 2041.2 2135.2
## - JobRole.Manager 1 2041.2 2135.2
## - Education.BelowCollege 1 2041.3 2135.3
## - WorkLifeBalance.Better 1 2041.5 2135.5
## - PerformanceRating.Excellent 1 2041.6 2135.6
## - EducationField.Marketing 1 2041.7 2135.7
## - `JobRole.Manufacturing Director` 1 2041.7 2135.7
## - `JobRole.Healthcare Representative` 1 2041.8 2135.8
## - MonthlyIncome 1 2042.0 2136.0
## - JobLevel 1 2042.0 2136.0
## - JobInvolvement.Low 1 2042.0 2136.0
## - Gender.Female 1 2042.2 2136.2
## - WorkLifeBalance.Best 1 2042.2 2136.2
## - StockOptionLevel 1 2042.4 2136.4
## - YearsAtCompany 1 2042.6 2136.6
## - JobInvolvement.High 1 2042.6 2136.6
## - WorkLifeBalance.Good 1 2042.9 2136.9
## <none> 2040.9 2136.9
## - Education.College 1 2042.9 2136.9
## - PercentSalaryHike 1 2043.3 2137.3
## - EducationField.Medical 1 2043.5 2137.5
## - `EducationField.Life Sciences` 1 2043.6 2137.6
## - `JobRole.Laboratory Technician` 1 2043.8 2137.8
## - `EducationField.Human Resources` 1 2044.1 2138.1
## + DistanceFromHome 1 2040.9 2138.9
## + EducationField.Other 1 2040.9 2138.9
## + `EducationField.Technical Degree` 1 2040.9 2138.9
## + JobSatisfaction.High 1 2040.9 2138.9
## + JobSatisfaction.NA 1 2040.9 2138.9
## - Education.Doctor 1 2045.1 2139.1
## - `BusinessTravel.Non-Travel` 1 2045.9 2139.9
## - `JobRole.Research Scientist` 1 2046.2 2140.2
## - `Department.Human Resources` 1 2046.5 2140.6
## - `JobRole.Research Director` 1 2047.6 2141.6
## - `JobRole.Sales Executive` 1 2048.6 2142.6
## - WorkLifeBalance.Bad 1 2049.4 2143.4
## - TrainingTimesLastYear 1 2050.2 2144.2
## - JobSatisfaction.Low 1 2050.6 2144.6
## - Age 1 2050.7 2144.7
## - JobSatisfaction.VeryHigh 1 2059.6 2153.6
## - NumCompaniesWorked 1 2062.5 2156.5
## - TotalWorkingYears 1 2069.0 2163.0
## - YearsWithCurrManager 1 2078.5 2172.5
## - EnvironmentSatisfaction 1 2078.6 2172.6
## - BusinessTravel.Travel_Frequently 1 2083.3 2177.3
## - YearsSinceLastPromotion 1 2091.7 2185.7
## - MaritalStatus.Divorced 1 2092.3 2186.3
## - MaritalStatus.Married 1 2098.8 2192.8
## - OfficeAvgduration 1 2164.1 2258.1
##
## Step: AIC=2134.97
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + Education.Bachelor +
## Education.BelowCollege + Education.College + Education.Doctor +
## `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Human Resources` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - Education.Bachelor 1 2041.1 2133.1
## - `Department.Research & Development` 1 2041.1 2133.1
## - `JobRole.Human Resources` 1 2041.1 2133.1
## - JobInvolvement.Medium 1 2041.3 2133.3
## - JobRole.Manager 1 2041.3 2133.3
## - Education.BelowCollege 1 2041.3 2133.3
## - WorkLifeBalance.Better 1 2041.6 2133.6
## - PerformanceRating.Excellent 1 2041.6 2133.6
## - EducationField.Marketing 1 2041.7 2133.7
## - `JobRole.Manufacturing Director` 1 2041.8 2133.8
## - `JobRole.Healthcare Representative` 1 2041.8 2133.8
## - MonthlyIncome 1 2042.0 2134.0
## - JobLevel 1 2042.0 2134.0
## - JobInvolvement.Low 1 2042.0 2134.0
## - Gender.Female 1 2042.2 2134.2
## - WorkLifeBalance.Best 1 2042.3 2134.3
## - StockOptionLevel 1 2042.5 2134.5
## - YearsAtCompany 1 2042.6 2134.6
## - JobInvolvement.High 1 2042.7 2134.7
## - WorkLifeBalance.Good 1 2042.9 2134.9
## <none> 2041.0 2135.0
## - Education.College 1 2043.0 2135.0
## - PercentSalaryHike 1 2043.4 2135.4
## - EducationField.Medical 1 2043.6 2135.6
## - `EducationField.Life Sciences` 1 2043.6 2135.6
## - `JobRole.Laboratory Technician` 1 2043.9 2135.9
## - `EducationField.Human Resources` 1 2044.2 2136.2
## + JobSatisfaction.Medium 1 2040.9 2136.9
## + JobSatisfaction.High 1 2040.9 2136.9
## + DistanceFromHome 1 2041.0 2136.9
## + EducationField.Other 1 2041.0 2137.0
## + `EducationField.Technical Degree` 1 2041.0 2137.0
## + JobSatisfaction.NA 1 2041.0 2137.0
## - Education.Doctor 1 2045.2 2137.2
## - `BusinessTravel.Non-Travel` 1 2045.9 2137.9
## - `JobRole.Research Scientist` 1 2046.2 2138.2
## - `Department.Human Resources` 1 2046.6 2138.6
## - `JobRole.Research Director` 1 2047.7 2139.7
## - `JobRole.Sales Executive` 1 2048.7 2140.7
## - WorkLifeBalance.Bad 1 2049.5 2141.5
## - TrainingTimesLastYear 1 2050.3 2142.3
## - Age 1 2050.7 2142.7
## - JobSatisfaction.Low 1 2053.1 2145.1
## - NumCompaniesWorked 1 2062.6 2154.6
## - JobSatisfaction.VeryHigh 1 2063.0 2155.0
## - TotalWorkingYears 1 2069.0 2161.0
## - YearsWithCurrManager 1 2078.5 2170.5
## - EnvironmentSatisfaction 1 2078.8 2170.8
## - BusinessTravel.Travel_Frequently 1 2083.5 2175.5
## - YearsSinceLastPromotion 1 2091.7 2183.7
## - MaritalStatus.Divorced 1 2092.3 2184.3
## - MaritalStatus.Married 1 2098.8 2190.8
## - OfficeAvgduration 1 2164.1 2256.1
##
## Step: AIC=2133.08
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + Education.BelowCollege +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Human Resources` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - `JobRole.Human Resources` 1 2041.2 2131.2
## - `Department.Research & Development` 1 2041.3 2131.3
## - Education.BelowCollege 1 2041.3 2131.3
## - JobInvolvement.Medium 1 2041.4 2131.4
## - JobRole.Manager 1 2041.4 2131.4
## - WorkLifeBalance.Better 1 2041.7 2131.7
## - PerformanceRating.Excellent 1 2041.8 2131.8
## - `JobRole.Manufacturing Director` 1 2041.9 2131.9
## - EducationField.Marketing 1 2041.9 2131.9
## - `JobRole.Healthcare Representative` 1 2042.0 2132.0
## - MonthlyIncome 1 2042.1 2132.1
## - JobLevel 1 2042.2 2132.2
## - JobInvolvement.Low 1 2042.2 2132.2
## - Gender.Female 1 2042.3 2132.3
## - WorkLifeBalance.Best 1 2042.4 2132.4
## - StockOptionLevel 1 2042.6 2132.6
## - JobInvolvement.High 1 2042.8 2132.8
## - YearsAtCompany 1 2042.8 2132.8
## - WorkLifeBalance.Good 1 2043.1 2133.1
## <none> 2041.1 2133.1
## - Education.College 1 2043.1 2133.1
## - PercentSalaryHike 1 2043.5 2133.5
## - EducationField.Medical 1 2043.6 2133.6
## - `EducationField.Life Sciences` 1 2043.7 2133.7
## - `JobRole.Laboratory Technician` 1 2044.0 2134.0
## - `EducationField.Human Resources` 1 2044.3 2134.3
## + Education.Bachelor 1 2041.0 2135.0
## + Education.Master 1 2041.0 2135.0
## + JobSatisfaction.Medium 1 2041.0 2135.0
## + JobSatisfaction.High 1 2041.0 2135.0
## + DistanceFromHome 1 2041.1 2135.1
## + EducationField.Other 1 2041.1 2135.1
## + `EducationField.Technical Degree` 1 2041.1 2135.1
## + JobSatisfaction.NA 1 2041.1 2135.1
## - Education.Doctor 1 2045.9 2135.9
## - `BusinessTravel.Non-Travel` 1 2046.0 2136.0
## - `JobRole.Research Scientist` 1 2046.3 2136.3
## - `Department.Human Resources` 1 2046.8 2136.8
## - `JobRole.Research Director` 1 2047.8 2137.8
## - `JobRole.Sales Executive` 1 2048.8 2138.8
## - WorkLifeBalance.Bad 1 2049.6 2139.6
## - TrainingTimesLastYear 1 2050.3 2140.3
## - Age 1 2050.8 2140.8
## - JobSatisfaction.Low 1 2053.3 2143.3
## - NumCompaniesWorked 1 2062.7 2152.7
## - JobSatisfaction.VeryHigh 1 2063.3 2153.3
## - TotalWorkingYears 1 2069.3 2159.3
## - YearsWithCurrManager 1 2078.6 2168.6
## - EnvironmentSatisfaction 1 2078.9 2168.9
## - BusinessTravel.Travel_Frequently 1 2083.6 2173.6
## - YearsSinceLastPromotion 1 2091.8 2181.8
## - MaritalStatus.Divorced 1 2092.4 2182.4
## - MaritalStatus.Married 1 2098.9 2188.9
## - OfficeAvgduration 1 2164.2 2254.2
##
## Step: AIC=2131.25
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## `Department.Research & Development` + Education.BelowCollege +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Laboratory Technician` + JobRole.Manager + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - `Department.Research & Development` 1 2041.4 2129.4
## - JobRole.Manager 1 2041.5 2129.5
## - Education.BelowCollege 1 2041.5 2129.5
## - JobInvolvement.Medium 1 2041.6 2129.6
## - WorkLifeBalance.Better 1 2041.8 2129.8
## - PerformanceRating.Excellent 1 2041.9 2129.9
## - `JobRole.Healthcare Representative` 1 2042.0 2130.0
## - EducationField.Marketing 1 2042.1 2130.1
## - MonthlyIncome 1 2042.3 2130.3
## - JobLevel 1 2042.3 2130.3
## - JobInvolvement.Low 1 2042.3 2130.3
## - Gender.Female 1 2042.5 2130.5
## - WorkLifeBalance.Best 1 2042.6 2130.6
## - StockOptionLevel 1 2042.8 2130.8
## - `JobRole.Manufacturing Director` 1 2042.8 2130.8
## - YearsAtCompany 1 2042.9 2130.9
## - JobInvolvement.High 1 2043.0 2131.0
## - WorkLifeBalance.Good 1 2043.2 2131.2
## <none> 2041.2 2131.2
## - Education.College 1 2043.3 2131.3
## - PercentSalaryHike 1 2043.6 2131.6
## - EducationField.Medical 1 2043.8 2131.8
## - `EducationField.Life Sciences` 1 2044.0 2131.9
## - `JobRole.Laboratory Technician` 1 2044.4 2132.4
## - `EducationField.Human Resources` 1 2044.4 2132.4
## + `JobRole.Human Resources` 1 2041.1 2133.1
## + `JobRole.Sales Representative` 1 2041.1 2133.1
## + Education.Bachelor 1 2041.1 2133.1
## + Education.Master 1 2041.1 2133.1
## + JobSatisfaction.Medium 1 2041.2 2133.2
## + JobSatisfaction.High 1 2041.2 2133.2
## + DistanceFromHome 1 2041.2 2133.2
## + JobSatisfaction.NA 1 2041.2 2133.2
## + EducationField.Other 1 2041.2 2133.2
## + `EducationField.Technical Degree` 1 2041.2 2133.2
## - Education.Doctor 1 2046.0 2134.0
## - `BusinessTravel.Non-Travel` 1 2046.2 2134.2
## - `Department.Human Resources` 1 2047.0 2135.0
## - `JobRole.Research Scientist` 1 2047.4 2135.4
## - `JobRole.Research Director` 1 2048.5 2136.5
## - WorkLifeBalance.Bad 1 2049.8 2137.8
## - TrainingTimesLastYear 1 2050.7 2138.7
## - `JobRole.Sales Executive` 1 2050.7 2138.7
## - Age 1 2051.1 2139.1
## - JobSatisfaction.Low 1 2053.3 2141.3
## - NumCompaniesWorked 1 2063.0 2151.0
## - JobSatisfaction.VeryHigh 1 2063.6 2151.6
## - TotalWorkingYears 1 2069.3 2157.3
## - YearsWithCurrManager 1 2078.7 2166.7
## - EnvironmentSatisfaction 1 2079.1 2167.1
## - BusinessTravel.Travel_Frequently 1 2084.0 2172.0
## - YearsSinceLastPromotion 1 2092.0 2180.0
## - MaritalStatus.Divorced 1 2093.1 2181.1
## - MaritalStatus.Married 1 2099.0 2187.0
## - OfficeAvgduration 1 2164.2 2252.2
##
## Step: AIC=2129.44
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.BelowCollege + Education.College + Education.Doctor +
## `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Laboratory Technician` +
## JobRole.Manager + `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - JobRole.Manager 1 2041.6 2127.6
## - Education.BelowCollege 1 2041.7 2127.7
## - JobInvolvement.Medium 1 2041.8 2127.8
## - WorkLifeBalance.Better 1 2042.0 2128.0
## - PerformanceRating.Excellent 1 2042.1 2128.1
## - EducationField.Marketing 1 2042.1 2128.1
## - `JobRole.Healthcare Representative` 1 2042.1 2128.1
## - MonthlyIncome 1 2042.4 2128.4
## - JobInvolvement.Low 1 2042.5 2128.5
## - JobLevel 1 2042.5 2128.5
## - Gender.Female 1 2042.7 2128.7
## - WorkLifeBalance.Best 1 2042.8 2128.8
## - `JobRole.Manufacturing Director` 1 2043.0 2129.0
## - StockOptionLevel 1 2043.0 2129.0
## - YearsAtCompany 1 2043.1 2129.1
## - JobInvolvement.High 1 2043.1 2129.1
## - Education.College 1 2043.4 2129.4
## - WorkLifeBalance.Good 1 2043.4 2129.4
## <none> 2041.4 2129.4
## - PercentSalaryHike 1 2043.8 2129.8
## - `EducationField.Life Sciences` 1 2044.2 2130.2
## - EducationField.Medical 1 2044.2 2130.2
## - `JobRole.Laboratory Technician` 1 2044.5 2130.6
## - `EducationField.Human Resources` 1 2044.6 2130.6
## + `Department.Research & Development` 1 2041.2 2131.2
## + Department.Sales 1 2041.2 2131.2
## + `JobRole.Human Resources` 1 2041.3 2131.3
## + `JobRole.Sales Representative` 1 2041.3 2131.3
## + Education.Bachelor 1 2041.3 2131.3
## + Education.Master 1 2041.3 2131.3
## + JobSatisfaction.Medium 1 2041.4 2131.4
## + JobSatisfaction.High 1 2041.4 2131.4
## + DistanceFromHome 1 2041.4 2131.4
## + JobSatisfaction.NA 1 2041.4 2131.4
## + EducationField.Other 1 2041.4 2131.4
## + `EducationField.Technical Degree` 1 2041.4 2131.4
## - Education.Doctor 1 2046.2 2132.2
## - `BusinessTravel.Non-Travel` 1 2046.4 2132.4
## - `Department.Human Resources` 1 2047.0 2133.0
## - `JobRole.Research Scientist` 1 2047.5 2133.5
## - `JobRole.Research Director` 1 2048.7 2134.7
## - WorkLifeBalance.Bad 1 2050.0 2136.0
## - `JobRole.Sales Executive` 1 2050.8 2136.8
## - TrainingTimesLastYear 1 2050.9 2136.9
## - Age 1 2051.4 2137.4
## - JobSatisfaction.Low 1 2053.4 2139.4
## - NumCompaniesWorked 1 2063.4 2149.4
## - JobSatisfaction.VeryHigh 1 2063.8 2149.8
## - TotalWorkingYears 1 2069.4 2155.4
## - YearsWithCurrManager 1 2078.8 2164.8
## - EnvironmentSatisfaction 1 2079.4 2165.4
## - BusinessTravel.Travel_Frequently 1 2084.0 2170.0
## - YearsSinceLastPromotion 1 2092.0 2178.0
## - MaritalStatus.Divorced 1 2093.2 2179.2
## - MaritalStatus.Married 1 2099.1 2185.1
## - OfficeAvgduration 1 2164.9 2250.9
##
## Step: AIC=2127.64
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.BelowCollege + Education.College + Education.Doctor +
## `EducationField.Human Resources` + `EducationField.Life Sciences` +
## EducationField.Marketing + EducationField.Medical + Gender.Female +
## JobLevel + `JobRole.Healthcare Representative` + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + JobInvolvement.Medium +
## PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - Education.BelowCollege 1 2041.9 2125.9
## - JobInvolvement.Medium 1 2042.0 2126.0
## - `JobRole.Healthcare Representative` 1 2042.1 2126.1
## - WorkLifeBalance.Better 1 2042.2 2126.2
## - PerformanceRating.Excellent 1 2042.3 2126.3
## - EducationField.Marketing 1 2042.3 2126.3
## - MonthlyIncome 1 2042.6 2126.6
## - JobLevel 1 2042.7 2126.7
## - JobInvolvement.Low 1 2042.8 2126.8
## - Gender.Female 1 2042.8 2126.8
## - WorkLifeBalance.Best 1 2043.0 2127.0
## - StockOptionLevel 1 2043.3 2127.3
## - JobInvolvement.High 1 2043.3 2127.3
## - YearsAtCompany 1 2043.4 2127.4
## - Education.College 1 2043.6 2127.6
## - WorkLifeBalance.Good 1 2043.6 2127.6
## <none> 2041.6 2127.6
## - PercentSalaryHike 1 2043.9 2127.9
## - `JobRole.Manufacturing Director` 1 2044.3 2128.3
## - EducationField.Medical 1 2044.4 2128.4
## - `EducationField.Life Sciences` 1 2044.4 2128.4
## - `JobRole.Laboratory Technician` 1 2044.8 2128.8
## - `EducationField.Human Resources` 1 2044.9 2128.9
## + `JobRole.Sales Representative` 1 2041.3 2129.3
## + JobRole.Manager 1 2041.4 2129.4
## + `Department.Research & Development` 1 2041.5 2129.5
## + Department.Sales 1 2041.5 2129.5
## + Education.Bachelor 1 2041.5 2129.5
## + Education.Master 1 2041.5 2129.5
## + JobSatisfaction.Medium 1 2041.6 2129.6
## + JobSatisfaction.High 1 2041.6 2129.6
## + `JobRole.Human Resources` 1 2041.6 2129.6
## + DistanceFromHome 1 2041.6 2129.6
## + JobSatisfaction.NA 1 2041.6 2129.6
## + EducationField.Other 1 2041.6 2129.6
## + `EducationField.Technical Degree` 1 2041.6 2129.6
## - Education.Doctor 1 2046.4 2130.4
## - `BusinessTravel.Non-Travel` 1 2046.6 2130.6
## - `Department.Human Resources` 1 2047.1 2131.1
## - `JobRole.Research Scientist` 1 2048.5 2132.5
## - `JobRole.Research Director` 1 2049.2 2133.2
## - WorkLifeBalance.Bad 1 2050.1 2134.1
## - TrainingTimesLastYear 1 2051.1 2135.1
## - Age 1 2051.7 2135.7
## - `JobRole.Sales Executive` 1 2052.7 2136.7
## - JobSatisfaction.Low 1 2053.5 2137.5
## - NumCompaniesWorked 1 2063.4 2147.4
## - JobSatisfaction.VeryHigh 1 2064.3 2148.3
## - TotalWorkingYears 1 2069.5 2153.5
## - YearsWithCurrManager 1 2079.2 2163.2
## - EnvironmentSatisfaction 1 2079.7 2163.7
## - BusinessTravel.Travel_Frequently 1 2084.6 2168.6
## - YearsSinceLastPromotion 1 2092.4 2176.4
## - MaritalStatus.Divorced 1 2093.5 2177.5
## - MaritalStatus.Married 1 2100.0 2184.0
## - OfficeAvgduration 1 2165.0 2249.0
##
## Step: AIC=2125.92
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## JobInvolvement.Medium + PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - JobInvolvement.Medium 1 2042.2 2124.2
## - `JobRole.Healthcare Representative` 1 2042.4 2124.4
## - PerformanceRating.Excellent 1 2042.5 2124.5
## - WorkLifeBalance.Better 1 2042.5 2124.6
## - EducationField.Marketing 1 2042.6 2124.6
## - MonthlyIncome 1 2042.9 2124.9
## - JobInvolvement.Low 1 2043.0 2125.0
## - Gender.Female 1 2043.1 2125.1
## - JobLevel 1 2043.1 2125.1
## - WorkLifeBalance.Best 1 2043.3 2125.3
## - StockOptionLevel 1 2043.5 2125.6
## - YearsAtCompany 1 2043.6 2125.6
## - JobInvolvement.High 1 2043.6 2125.6
## - Education.College 1 2043.7 2125.7
## <none> 2041.9 2125.9
## - WorkLifeBalance.Good 1 2044.0 2126.0
## - PercentSalaryHike 1 2044.2 2126.2
## - `JobRole.Manufacturing Director` 1 2044.5 2126.5
## - `EducationField.Life Sciences` 1 2044.6 2126.6
## - EducationField.Medical 1 2044.7 2126.7
## - `EducationField.Human Resources` 1 2045.2 2127.2
## - `JobRole.Laboratory Technician` 1 2045.3 2127.3
## + `JobRole.Sales Representative` 1 2041.6 2127.6
## + Education.BelowCollege 1 2041.6 2127.6
## + Education.Master 1 2041.7 2127.7
## + JobRole.Manager 1 2041.7 2127.7
## + `Department.Research & Development` 1 2041.7 2127.7
## + Department.Sales 1 2041.7 2127.7
## + JobSatisfaction.Medium 1 2041.9 2127.9
## + JobSatisfaction.High 1 2041.9 2127.9
## + `JobRole.Human Resources` 1 2041.9 2127.9
## + Education.Bachelor 1 2041.9 2127.9
## + DistanceFromHome 1 2041.9 2127.9
## + JobSatisfaction.NA 1 2041.9 2127.9
## + EducationField.Other 1 2041.9 2127.9
## + `EducationField.Technical Degree` 1 2041.9 2127.9
## - Education.Doctor 1 2046.8 2128.8
## - `BusinessTravel.Non-Travel` 1 2046.9 2128.9
## - `Department.Human Resources` 1 2047.4 2129.4
## - `JobRole.Research Scientist` 1 2049.0 2131.0
## - `JobRole.Research Director` 1 2049.5 2131.5
## - WorkLifeBalance.Bad 1 2050.6 2132.6
## - TrainingTimesLastYear 1 2051.5 2133.5
## - Age 1 2051.9 2133.9
## - `JobRole.Sales Executive` 1 2053.2 2135.2
## - JobSatisfaction.Low 1 2053.7 2135.7
## - NumCompaniesWorked 1 2063.7 2145.7
## - JobSatisfaction.VeryHigh 1 2064.8 2146.8
## - TotalWorkingYears 1 2069.8 2151.8
## - YearsWithCurrManager 1 2079.4 2161.4
## - EnvironmentSatisfaction 1 2079.9 2161.9
## - BusinessTravel.Travel_Frequently 1 2084.8 2166.8
## - YearsSinceLastPromotion 1 2092.7 2174.7
## - MaritalStatus.Divorced 1 2093.7 2175.7
## - MaritalStatus.Married 1 2100.0 2182.0
## - OfficeAvgduration 1 2166.4 2248.4
##
## Step: AIC=2124.23
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Healthcare Representative` +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Better +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## PerformanceRating.Excellent + OfficeAvgduration
##
## Df Deviance AIC
## - `JobRole.Healthcare Representative` 1 2042.8 2122.8
## - PerformanceRating.Excellent 1 2042.8 2122.8
## - WorkLifeBalance.Better 1 2042.9 2122.9
## - EducationField.Marketing 1 2042.9 2122.9
## - MonthlyIncome 1 2043.2 2123.2
## - Gender.Female 1 2043.4 2123.4
## - JobLevel 1 2043.5 2123.5
## - WorkLifeBalance.Best 1 2043.6 2123.6
## - StockOptionLevel 1 2043.9 2123.9
## - YearsAtCompany 1 2043.9 2123.9
## - Education.College 1 2044.0 2124.0
## - JobInvolvement.High 1 2044.2 2124.2
## <none> 2042.2 2124.2
## - WorkLifeBalance.Good 1 2044.3 2124.3
## - PercentSalaryHike 1 2044.5 2124.5
## - JobInvolvement.Low 1 2044.6 2124.6
## - `JobRole.Manufacturing Director` 1 2044.7 2124.7
## - EducationField.Medical 1 2045.0 2125.0
## - `EducationField.Life Sciences` 1 2045.0 2125.0
## - `EducationField.Human Resources` 1 2045.5 2125.4
## - `JobRole.Laboratory Technician` 1 2045.8 2125.8
## + `JobRole.Sales Representative` 1 2041.9 2125.9
## + JobInvolvement.Medium 1 2041.9 2125.9
## + JobInvolvement.VeryHigh 1 2041.9 2125.9
## + Education.Master 1 2042.0 2125.9
## + Education.BelowCollege 1 2042.0 2126.0
## + JobRole.Manager 1 2042.0 2126.0
## + `Department.Research & Development` 1 2042.0 2126.0
## + Department.Sales 1 2042.0 2126.0
## + JobSatisfaction.Medium 1 2042.2 2126.2
## + JobSatisfaction.High 1 2042.2 2126.2
## + `JobRole.Human Resources` 1 2042.2 2126.2
## + Education.Bachelor 1 2042.2 2126.2
## + DistanceFromHome 1 2042.2 2126.2
## + EducationField.Other 1 2042.2 2126.2
## + `EducationField.Technical Degree` 1 2042.2 2126.2
## + JobSatisfaction.NA 1 2042.2 2126.2
## - Education.Doctor 1 2047.1 2127.1
## - `BusinessTravel.Non-Travel` 1 2047.3 2127.3
## - `Department.Human Resources` 1 2047.8 2127.8
## - `JobRole.Research Scientist` 1 2049.4 2129.4
## - `JobRole.Research Director` 1 2050.2 2130.2
## - WorkLifeBalance.Bad 1 2050.8 2130.8
## - TrainingTimesLastYear 1 2051.7 2131.7
## - Age 1 2052.0 2132.0
## - `JobRole.Sales Executive` 1 2053.6 2133.6
## - JobSatisfaction.Low 1 2054.0 2134.0
## - NumCompaniesWorked 1 2064.1 2144.1
## - JobSatisfaction.VeryHigh 1 2065.1 2145.1
## - TotalWorkingYears 1 2070.4 2150.4
## - YearsWithCurrManager 1 2079.8 2159.8
## - EnvironmentSatisfaction 1 2080.3 2160.3
## - BusinessTravel.Travel_Frequently 1 2085.2 2165.2
## - YearsSinceLastPromotion 1 2093.2 2173.2
## - MaritalStatus.Divorced 1 2093.9 2173.9
## - MaritalStatus.Married 1 2101.0 2181.0
## - OfficeAvgduration 1 2166.5 2246.5
##
## Step: AIC=2122.79
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + PerformanceRating.Excellent +
## OfficeAvgduration
##
## Df Deviance AIC
## - PerformanceRating.Excellent 1 2043.3 2121.3
## - WorkLifeBalance.Better 1 2043.4 2121.4
## - EducationField.Marketing 1 2043.4 2121.4
## - MonthlyIncome 1 2043.8 2121.8
## - JobLevel 1 2044.0 2122.0
## - Gender.Female 1 2044.0 2122.0
## - WorkLifeBalance.Best 1 2044.1 2122.1
## - StockOptionLevel 1 2044.4 2122.4
## - YearsAtCompany 1 2044.4 2122.4
## - Education.College 1 2044.6 2122.6
## - WorkLifeBalance.Good 1 2044.8 2122.8
## - JobInvolvement.High 1 2044.8 2122.8
## <none> 2042.8 2122.8
## - PercentSalaryHike 1 2045.0 2123.0
## - JobInvolvement.Low 1 2045.2 2123.2
## - `EducationField.Life Sciences` 1 2045.5 2123.5
## - EducationField.Medical 1 2045.5 2123.5
## - `JobRole.Laboratory Technician` 1 2045.8 2123.8
## - `EducationField.Human Resources` 1 2046.0 2124.0
## + `JobRole.Sales Representative` 1 2042.0 2124.0
## + `JobRole.Healthcare Representative` 1 2042.2 2124.2
## + JobInvolvement.Medium 1 2042.4 2124.4
## + JobInvolvement.VeryHigh 1 2042.4 2124.4
## + Education.Master 1 2042.5 2124.5
## + Education.BelowCollege 1 2042.5 2124.5
## + `Department.Research & Development` 1 2042.6 2124.6
## + Department.Sales 1 2042.6 2124.6
## - `JobRole.Manufacturing Director` 1 2046.7 2124.7
## + Education.Bachelor 1 2042.8 2124.8
## + JobSatisfaction.Medium 1 2042.8 2124.8
## + JobSatisfaction.High 1 2042.8 2124.8
## + JobRole.Manager 1 2042.8 2124.8
## + `JobRole.Human Resources` 1 2042.8 2124.8
## + DistanceFromHome 1 2042.8 2124.8
## + EducationField.Other 1 2042.8 2124.8
## + `EducationField.Technical Degree` 1 2042.8 2124.8
## + JobSatisfaction.NA 1 2042.8 2124.8
## - Education.Doctor 1 2047.8 2125.8
## - `BusinessTravel.Non-Travel` 1 2047.9 2125.9
## - `Department.Human Resources` 1 2048.3 2126.3
## - `JobRole.Research Scientist` 1 2049.7 2127.7
## - `JobRole.Research Director` 1 2050.2 2128.2
## - WorkLifeBalance.Bad 1 2051.3 2129.3
## - TrainingTimesLastYear 1 2052.5 2130.5
## - Age 1 2052.9 2130.9
## - `JobRole.Sales Executive` 1 2054.3 2132.3
## - JobSatisfaction.Low 1 2054.6 2132.6
## - NumCompaniesWorked 1 2064.7 2142.7
## - JobSatisfaction.VeryHigh 1 2065.5 2143.5
## - TotalWorkingYears 1 2070.8 2148.8
## - YearsWithCurrManager 1 2080.1 2158.1
## - EnvironmentSatisfaction 1 2080.7 2158.7
## - BusinessTravel.Travel_Frequently 1 2085.7 2163.7
## - YearsSinceLastPromotion 1 2094.0 2172.0
## - MaritalStatus.Divorced 1 2094.3 2172.3
## - MaritalStatus.Married 1 2101.1 2179.1
## - OfficeAvgduration 1 2167.0 2245.0
##
## Step: AIC=2121.34
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Better + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - WorkLifeBalance.Better 1 2043.9 2119.9
## - EducationField.Marketing 1 2044.0 2120.0
## - MonthlyIncome 1 2044.4 2120.4
## - JobLevel 1 2044.5 2120.5
## - Gender.Female 1 2044.5 2120.5
## - WorkLifeBalance.Best 1 2044.6 2120.6
## - StockOptionLevel 1 2044.8 2120.8
## - YearsAtCompany 1 2044.9 2120.9
## - Education.College 1 2045.1 2121.1
## - WorkLifeBalance.Good 1 2045.3 2121.3
## <none> 2043.3 2121.3
## - JobInvolvement.High 1 2045.4 2121.4
## - PercentSalaryHike 1 2045.5 2121.5
## - JobInvolvement.Low 1 2045.7 2121.7
## - EducationField.Medical 1 2046.0 2122.1
## - `EducationField.Life Sciences` 1 2046.1 2122.1
## - `JobRole.Laboratory Technician` 1 2046.4 2122.4
## - `EducationField.Human Resources` 1 2046.6 2122.6
## + `JobRole.Sales Representative` 1 2042.6 2122.6
## + PerformanceRating.Excellent 1 2042.8 2122.8
## + PerformanceRating.Outstanding 1 2042.8 2122.8
## + `JobRole.Healthcare Representative` 1 2042.8 2122.8
## + JobInvolvement.Medium 1 2043.0 2123.0
## + JobInvolvement.VeryHigh 1 2043.0 2123.0
## + Education.Master 1 2043.0 2123.0
## + Education.BelowCollege 1 2043.0 2123.1
## - `JobRole.Manufacturing Director` 1 2047.1 2123.1
## + `Department.Research & Development` 1 2043.2 2123.2
## + Department.Sales 1 2043.2 2123.2
## + Education.Bachelor 1 2043.3 2123.3
## + JobSatisfaction.Medium 1 2043.3 2123.3
## + JobSatisfaction.High 1 2043.3 2123.3
## + DistanceFromHome 1 2043.3 2123.3
## + JobRole.Manager 1 2043.3 2123.3
## + `JobRole.Human Resources` 1 2043.3 2123.3
## + EducationField.Other 1 2043.3 2123.3
## + `EducationField.Technical Degree` 1 2043.3 2123.3
## + JobSatisfaction.NA 1 2043.3 2123.3
## - Education.Doctor 1 2048.2 2124.2
## - `BusinessTravel.Non-Travel` 1 2048.4 2124.4
## - `Department.Human Resources` 1 2048.9 2124.9
## - `JobRole.Research Scientist` 1 2050.2 2126.2
## - `JobRole.Research Director` 1 2050.7 2126.7
## - WorkLifeBalance.Bad 1 2051.8 2127.8
## - TrainingTimesLastYear 1 2053.1 2129.1
## - Age 1 2053.3 2129.3
## - `JobRole.Sales Executive` 1 2054.7 2130.7
## - JobSatisfaction.Low 1 2054.9 2130.9
## - NumCompaniesWorked 1 2065.2 2141.2
## - JobSatisfaction.VeryHigh 1 2066.8 2142.8
## - TotalWorkingYears 1 2071.5 2147.5
## - YearsWithCurrManager 1 2080.7 2156.7
## - EnvironmentSatisfaction 1 2081.3 2157.3
## - BusinessTravel.Travel_Frequently 1 2086.3 2162.3
## - YearsSinceLastPromotion 1 2094.5 2170.5
## - MaritalStatus.Divorced 1 2094.6 2170.6
## - MaritalStatus.Married 1 2102.4 2178.4
## - OfficeAvgduration 1 2167.0 2243.0
##
## Step: AIC=2119.92
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Marketing +
## EducationField.Medical + Gender.Female + JobLevel + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - EducationField.Marketing 1 2044.6 2118.6
## - MonthlyIncome 1 2045.0 2119.0
## - Gender.Female 1 2045.1 2119.1
## - JobLevel 1 2045.1 2119.1
## - StockOptionLevel 1 2045.3 2119.3
## - YearsAtCompany 1 2045.5 2119.5
## - Education.College 1 2045.7 2119.7
## <none> 2043.9 2119.9
## - JobInvolvement.High 1 2046.0 2120.0
## - PercentSalaryHike 1 2046.1 2120.1
## - WorkLifeBalance.Best 1 2046.1 2120.1
## - JobInvolvement.Low 1 2046.3 2120.3
## - EducationField.Medical 1 2046.6 2120.6
## - `EducationField.Life Sciences` 1 2046.7 2120.7
## - `JobRole.Laboratory Technician` 1 2047.0 2121.0
## - `EducationField.Human Resources` 1 2047.2 2121.2
## + `JobRole.Sales Representative` 1 2043.2 2121.2
## + WorkLifeBalance.NA 1 2043.3 2121.3
## + WorkLifeBalance.Better 1 2043.3 2121.3
## + PerformanceRating.Excellent 1 2043.4 2121.4
## + PerformanceRating.Outstanding 1 2043.4 2121.4
## + `JobRole.Healthcare Representative` 1 2043.5 2121.5
## + JobInvolvement.Medium 1 2043.5 2121.5
## + JobInvolvement.VeryHigh 1 2043.5 2121.5
## + Education.Master 1 2043.6 2121.6
## - `JobRole.Manufacturing Director` 1 2047.6 2121.6
## + Education.BelowCollege 1 2043.6 2121.6
## + `Department.Research & Development` 1 2043.8 2121.8
## + Department.Sales 1 2043.8 2121.8
## + Education.Bachelor 1 2043.9 2121.9
## + JobSatisfaction.Medium 1 2043.9 2121.9
## + JobSatisfaction.High 1 2043.9 2121.9
## + DistanceFromHome 1 2043.9 2121.9
## + JobRole.Manager 1 2043.9 2121.9
## + EducationField.Other 1 2043.9 2121.9
## + `EducationField.Technical Degree` 1 2043.9 2121.9
## + `JobRole.Human Resources` 1 2043.9 2121.9
## + JobSatisfaction.NA 1 2043.9 2121.9
## - Education.Doctor 1 2048.7 2122.7
## - `BusinessTravel.Non-Travel` 1 2048.9 2122.9
## - `Department.Human Resources` 1 2049.5 2123.5
## - `JobRole.Research Scientist` 1 2050.8 2124.8
## - `JobRole.Research Director` 1 2051.4 2125.4
## - TrainingTimesLastYear 1 2053.7 2127.7
## - Age 1 2054.0 2128.0
## - WorkLifeBalance.Good 1 2054.4 2128.4
## - `JobRole.Sales Executive` 1 2055.3 2129.3
## - JobSatisfaction.Low 1 2055.4 2129.4
## - NumCompaniesWorked 1 2065.7 2139.7
## - JobSatisfaction.VeryHigh 1 2067.5 2141.5
## - TotalWorkingYears 1 2072.0 2146.0
## - YearsWithCurrManager 1 2081.3 2155.3
## - EnvironmentSatisfaction 1 2081.7 2155.7
## - WorkLifeBalance.Bad 1 2083.8 2157.8
## - BusinessTravel.Travel_Frequently 1 2086.8 2160.8
## - MaritalStatus.Divorced 1 2094.9 2168.9
## - YearsSinceLastPromotion 1 2095.1 2169.1
## - MaritalStatus.Married 1 2102.9 2176.9
## - OfficeAvgduration 1 2168.4 2242.4
##
## Step: AIC=2118.58
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## Gender.Female + JobLevel + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + MonthlyIncome +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - JobLevel 1 2045.7 2117.7
## - Gender.Female 1 2045.8 2117.8
## - MonthlyIncome 1 2045.8 2117.8
## - StockOptionLevel 1 2046.0 2118.0
## - YearsAtCompany 1 2046.2 2118.2
## - Education.College 1 2046.3 2118.3
## <none> 2044.6 2118.6
## - EducationField.Medical 1 2046.6 2118.6
## - WorkLifeBalance.Best 1 2046.7 2118.7
## - `EducationField.Life Sciences` 1 2046.7 2118.7
## - PercentSalaryHike 1 2046.8 2118.8
## - JobInvolvement.High 1 2046.8 2118.8
## - JobInvolvement.Low 1 2046.9 2118.9
## - `EducationField.Human Resources` 1 2047.4 2119.4
## + `JobRole.Sales Representative` 1 2043.8 2119.8
## - `JobRole.Laboratory Technician` 1 2047.9 2119.9
## + EducationField.Marketing 1 2043.9 2119.9
## + WorkLifeBalance.Better 1 2044.0 2120.0
## + WorkLifeBalance.NA 1 2044.0 2120.0
## + PerformanceRating.Excellent 1 2044.0 2120.0
## + PerformanceRating.Outstanding 1 2044.0 2120.0
## + `JobRole.Healthcare Representative` 1 2044.1 2120.1
## + JobInvolvement.Medium 1 2044.2 2120.2
## + JobInvolvement.VeryHigh 1 2044.2 2120.2
## + Education.Master 1 2044.2 2120.2
## + `EducationField.Technical Degree` 1 2044.2 2120.2
## + Education.BelowCollege 1 2044.3 2120.3
## - `JobRole.Manufacturing Director` 1 2048.3 2120.3
## + EducationField.Other 1 2044.5 2120.5
## + Education.Bachelor 1 2044.5 2120.5
## + JobSatisfaction.Medium 1 2044.5 2120.6
## + JobSatisfaction.High 1 2044.5 2120.6
## + DistanceFromHome 1 2044.6 2120.6
## + JobRole.Manager 1 2044.6 2120.6
## + `JobRole.Human Resources` 1 2044.6 2120.6
## + JobSatisfaction.NA 1 2044.6 2120.6
## + `Department.Research & Development` 1 2044.6 2120.6
## + Department.Sales 1 2044.6 2120.6
## - Education.Doctor 1 2049.5 2121.5
## - `BusinessTravel.Non-Travel` 1 2049.8 2121.8
## - `Department.Human Resources` 1 2050.0 2122.0
## - `JobRole.Research Scientist` 1 2051.9 2123.9
## - `JobRole.Research Director` 1 2052.2 2124.2
## - TrainingTimesLastYear 1 2054.2 2126.2
## - WorkLifeBalance.Good 1 2054.9 2126.9
## - Age 1 2055.1 2127.1
## - JobSatisfaction.Low 1 2056.2 2128.2
## - `JobRole.Sales Executive` 1 2056.3 2128.3
## - NumCompaniesWorked 1 2066.5 2138.5
## - JobSatisfaction.VeryHigh 1 2067.8 2139.8
## - TotalWorkingYears 1 2072.6 2144.6
## - YearsWithCurrManager 1 2082.4 2154.4
## - EnvironmentSatisfaction 1 2083.1 2155.1
## - WorkLifeBalance.Bad 1 2084.6 2156.6
## - BusinessTravel.Travel_Frequently 1 2087.8 2159.8
## - MaritalStatus.Divorced 1 2095.2 2167.2
## - YearsSinceLastPromotion 1 2096.1 2168.1
## - MaritalStatus.Married 1 2103.9 2175.9
## - OfficeAvgduration 1 2169.4 2241.4
##
## Step: AIC=2117.7
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## Gender.Female + `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - Gender.Female 1 2047.0 2117.0
## - MonthlyIncome 1 2047.0 2117.0
## - StockOptionLevel 1 2047.0 2117.0
## - YearsAtCompany 1 2047.3 2117.3
## - Education.College 1 2047.4 2117.4
## <none> 2045.7 2117.7
## - WorkLifeBalance.Best 1 2047.7 2117.7
## - PercentSalaryHike 1 2047.8 2117.8
## - `EducationField.Life Sciences` 1 2047.8 2117.8
## - EducationField.Medical 1 2047.9 2117.9
## - JobInvolvement.High 1 2047.9 2117.9
## - JobInvolvement.Low 1 2048.0 2118.0
## + JobLevel 1 2044.6 2118.6
## - `EducationField.Human Resources` 1 2048.8 2118.8
## + `JobRole.Sales Representative` 1 2045.0 2119.0
## + EducationField.Marketing 1 2045.1 2119.1
## + WorkLifeBalance.Better 1 2045.1 2119.1
## + WorkLifeBalance.NA 1 2045.1 2119.1
## + PerformanceRating.Excellent 1 2045.1 2119.1
## + PerformanceRating.Outstanding 1 2045.1 2119.1
## - `JobRole.Laboratory Technician` 1 2049.1 2119.1
## + JobInvolvement.Medium 1 2045.2 2119.2
## + JobInvolvement.VeryHigh 1 2045.2 2119.2
## + Education.BelowCollege 1 2045.3 2119.3
## + `JobRole.Healthcare Representative` 1 2045.3 2119.3
## + Education.Master 1 2045.3 2119.3
## + `EducationField.Technical Degree` 1 2045.4 2119.4
## - `JobRole.Manufacturing Director` 1 2049.4 2119.4
## + EducationField.Other 1 2045.6 2119.6
## + Education.Bachelor 1 2045.7 2119.7
## + JobSatisfaction.Medium 1 2045.7 2119.7
## + JobSatisfaction.High 1 2045.7 2119.7
## + JobRole.Manager 1 2045.7 2119.7
## + DistanceFromHome 1 2045.7 2119.7
## + `Department.Research & Development` 1 2045.7 2119.7
## + Department.Sales 1 2045.7 2119.7
## + JobSatisfaction.NA 1 2045.7 2119.7
## + `JobRole.Human Resources` 1 2045.7 2119.7
## - Education.Doctor 1 2050.6 2120.6
## - `Department.Human Resources` 1 2050.8 2120.8
## - `BusinessTravel.Non-Travel` 1 2050.8 2120.8
## - `JobRole.Research Director` 1 2053.0 2123.0
## - `JobRole.Research Scientist` 1 2053.2 2123.2
## - TrainingTimesLastYear 1 2055.0 2125.0
## - WorkLifeBalance.Good 1 2056.0 2126.0
## - Age 1 2056.6 2126.6
## - JobSatisfaction.Low 1 2057.3 2127.3
## - `JobRole.Sales Executive` 1 2057.6 2127.6
## - NumCompaniesWorked 1 2067.8 2137.8
## - JobSatisfaction.VeryHigh 1 2068.7 2138.7
## - TotalWorkingYears 1 2073.3 2143.3
## - YearsWithCurrManager 1 2083.8 2153.8
## - EnvironmentSatisfaction 1 2083.9 2153.9
## - WorkLifeBalance.Bad 1 2085.3 2155.3
## - BusinessTravel.Travel_Frequently 1 2090.2 2160.2
## - MaritalStatus.Divorced 1 2096.9 2166.9
## - YearsSinceLastPromotion 1 2097.5 2167.5
## - MaritalStatus.Married 1 2105.5 2175.5
## - OfficeAvgduration 1 2170.0 2240.0
##
## Step: AIC=2116.96
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## MonthlyIncome + NumCompaniesWorked + PercentSalaryHike +
## StockOptionLevel + TotalWorkingYears + TrainingTimesLastYear +
## YearsAtCompany + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - MonthlyIncome 1 2048.2 2116.2
## - StockOptionLevel 1 2048.3 2116.3
## - YearsAtCompany 1 2048.6 2116.6
## - Education.College 1 2048.7 2116.7
## <none> 2047.0 2117.0
## - WorkLifeBalance.Best 1 2049.0 2117.0
## - `EducationField.Life Sciences` 1 2049.1 2117.1
## - JobInvolvement.High 1 2049.1 2117.1
## - JobInvolvement.Low 1 2049.1 2117.1
## - EducationField.Medical 1 2049.1 2117.1
## - PercentSalaryHike 1 2049.2 2117.2
## + Gender.Female 1 2045.7 2117.7
## + Gender.Male 1 2045.7 2117.7
## + JobLevel 1 2045.8 2117.8
## - `EducationField.Human Resources` 1 2050.2 2118.2
## + `JobRole.Sales Representative` 1 2046.3 2118.3
## + EducationField.Marketing 1 2046.4 2118.4
## + WorkLifeBalance.Better 1 2046.4 2118.4
## + WorkLifeBalance.NA 1 2046.4 2118.4
## + PerformanceRating.Excellent 1 2046.4 2118.4
## + PerformanceRating.Outstanding 1 2046.4 2118.4
## - `JobRole.Laboratory Technician` 1 2050.4 2118.4
## + JobInvolvement.Medium 1 2046.5 2118.5
## + JobInvolvement.VeryHigh 1 2046.5 2118.5
## + `JobRole.Healthcare Representative` 1 2046.5 2118.5
## + Education.BelowCollege 1 2046.6 2118.6
## + Education.Master 1 2046.6 2118.6
## + `EducationField.Technical Degree` 1 2046.7 2118.7
## - `JobRole.Manufacturing Director` 1 2050.7 2118.7
## + EducationField.Other 1 2046.8 2118.8
## + Education.Bachelor 1 2046.9 2118.9
## + DistanceFromHome 1 2046.9 2118.9
## + JobSatisfaction.Medium 1 2047.0 2118.9
## + JobSatisfaction.High 1 2047.0 2118.9
## + `JobRole.Human Resources` 1 2047.0 2119.0
## + JobRole.Manager 1 2047.0 2119.0
## + JobSatisfaction.NA 1 2047.0 2119.0
## + `Department.Research & Development` 1 2047.0 2119.0
## + Department.Sales 1 2047.0 2119.0
## - `BusinessTravel.Non-Travel` 1 2051.8 2119.8
## - `Department.Human Resources` 1 2051.9 2119.9
## - Education.Doctor 1 2052.0 2120.0
## - `JobRole.Research Director` 1 2054.4 2122.4
## - `JobRole.Research Scientist` 1 2054.8 2122.8
## - TrainingTimesLastYear 1 2056.4 2124.4
## - WorkLifeBalance.Good 1 2057.6 2125.6
## - Age 1 2058.2 2126.2
## - JobSatisfaction.Low 1 2058.5 2126.5
## - `JobRole.Sales Executive` 1 2059.1 2127.1
## - NumCompaniesWorked 1 2068.5 2136.5
## - JobSatisfaction.VeryHigh 1 2070.1 2138.1
## - TotalWorkingYears 1 2074.6 2142.6
## - YearsWithCurrManager 1 2085.2 2153.2
## - EnvironmentSatisfaction 1 2085.7 2153.7
## - WorkLifeBalance.Bad 1 2086.6 2154.6
## - BusinessTravel.Travel_Frequently 1 2091.2 2159.2
## - MaritalStatus.Divorced 1 2097.6 2165.6
## - YearsSinceLastPromotion 1 2098.3 2166.3
## - MaritalStatus.Married 1 2106.7 2174.7
## - OfficeAvgduration 1 2171.6 2239.6
##
## Step: AIC=2116.24
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## NumCompaniesWorked + PercentSalaryHike + StockOptionLevel +
## TotalWorkingYears + TrainingTimesLastYear + YearsAtCompany +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - StockOptionLevel 1 2049.8 2115.8
## - YearsAtCompany 1 2049.9 2115.9
## - Education.College 1 2050.0 2116.0
## - WorkLifeBalance.Best 1 2050.2 2116.2
## <none> 2048.2 2116.2
## - `EducationField.Life Sciences` 1 2050.3 2116.3
## - EducationField.Medical 1 2050.3 2116.3
## - JobInvolvement.Low 1 2050.4 2116.4
## - JobInvolvement.High 1 2050.6 2116.6
## - PercentSalaryHike 1 2050.6 2116.6
## + JobLevel 1 2046.9 2116.9
## + MonthlyIncome 1 2047.0 2117.0
## + Gender.Female 1 2047.0 2117.0
## + Gender.Male 1 2047.0 2117.0
## - `EducationField.Human Resources` 1 2051.4 2117.4
## - `JobRole.Laboratory Technician` 1 2051.6 2117.6
## + `JobRole.Sales Representative` 1 2047.6 2117.6
## + EducationField.Marketing 1 2047.6 2117.6
## + WorkLifeBalance.Better 1 2047.7 2117.7
## + WorkLifeBalance.NA 1 2047.7 2117.7
## + PerformanceRating.Excellent 1 2047.7 2117.7
## + PerformanceRating.Outstanding 1 2047.7 2117.7
## + Education.BelowCollege 1 2047.8 2117.8
## + `JobRole.Healthcare Representative` 1 2047.8 2117.8
## + JobInvolvement.Medium 1 2047.8 2117.8
## + JobInvolvement.VeryHigh 1 2047.8 2117.8
## + Education.Master 1 2047.9 2117.9
## + `EducationField.Technical Degree` 1 2048.0 2118.0
## + EducationField.Other 1 2048.1 2118.1
## - `JobRole.Manufacturing Director` 1 2052.2 2118.2
## + DistanceFromHome 1 2048.2 2118.2
## + Education.Bachelor 1 2048.2 2118.2
## + `JobRole.Human Resources` 1 2048.2 2118.2
## + JobRole.Manager 1 2048.2 2118.2
## + JobSatisfaction.NA 1 2048.2 2118.2
## + JobSatisfaction.Medium 1 2048.2 2118.2
## + JobSatisfaction.High 1 2048.2 2118.2
## + `Department.Research & Development` 1 2048.2 2118.2
## + Department.Sales 1 2048.2 2118.2
## - Education.Doctor 1 2053.3 2119.3
## - `BusinessTravel.Non-Travel` 1 2053.4 2119.4
## - `Department.Human Resources` 1 2053.4 2119.4
## - `JobRole.Research Director` 1 2055.4 2121.4
## - `JobRole.Research Scientist` 1 2055.9 2121.9
## - TrainingTimesLastYear 1 2057.7 2123.7
## - Age 1 2059.0 2125.0
## - WorkLifeBalance.Good 1 2059.1 2125.1
## - JobSatisfaction.Low 1 2059.8 2125.8
## - `JobRole.Sales Executive` 1 2060.1 2126.1
## - NumCompaniesWorked 1 2070.2 2136.2
## - JobSatisfaction.VeryHigh 1 2071.3 2137.3
## - TotalWorkingYears 1 2076.2 2142.2
## - YearsWithCurrManager 1 2086.2 2152.2
## - EnvironmentSatisfaction 1 2086.9 2152.9
## - WorkLifeBalance.Bad 1 2087.1 2153.1
## - BusinessTravel.Travel_Frequently 1 2093.2 2159.2
## - YearsSinceLastPromotion 1 2098.7 2164.7
## - MaritalStatus.Divorced 1 2100.4 2166.4
## - MaritalStatus.Married 1 2109.7 2175.7
## - OfficeAvgduration 1 2172.4 2238.4
##
## Step: AIC=2115.75
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## NumCompaniesWorked + PercentSalaryHike + TotalWorkingYears +
## TrainingTimesLastYear + YearsAtCompany + YearsSinceLastPromotion +
## YearsWithCurrManager + EnvironmentSatisfaction + JobSatisfaction.Low +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## OfficeAvgduration
##
## Df Deviance AIC
## - YearsAtCompany 1 2051.3 2115.3
## - Education.College 1 2051.5 2115.5
## - EducationField.Medical 1 2051.5 2115.5
## - WorkLifeBalance.Best 1 2051.7 2115.7
## <none> 2049.8 2115.8
## - `EducationField.Life Sciences` 1 2051.8 2115.8
## - JobInvolvement.High 1 2052.0 2116.0
## - JobInvolvement.Low 1 2052.1 2116.1
## - PercentSalaryHike 1 2052.2 2116.2
## + StockOptionLevel 1 2048.2 2116.2
## + MonthlyIncome 1 2048.3 2116.3
## + JobLevel 1 2048.4 2116.4
## + Gender.Female 1 2048.5 2116.5
## + Gender.Male 1 2048.5 2116.5
## - `JobRole.Laboratory Technician` 1 2052.7 2116.7
## - `EducationField.Human Resources` 1 2052.9 2116.9
## + `JobRole.Sales Representative` 1 2049.1 2117.1
## + EducationField.Marketing 1 2049.1 2117.1
## + WorkLifeBalance.Better 1 2049.2 2117.2
## + WorkLifeBalance.NA 1 2049.2 2117.2
## + Education.BelowCollege 1 2049.3 2117.3
## + PerformanceRating.Excellent 1 2049.3 2117.3
## + PerformanceRating.Outstanding 1 2049.3 2117.3
## + `JobRole.Healthcare Representative` 1 2049.3 2117.3
## + JobInvolvement.Medium 1 2049.3 2117.3
## + JobInvolvement.VeryHigh 1 2049.3 2117.3
## + Education.Master 1 2049.4 2117.4
## + `EducationField.Technical Degree` 1 2049.5 2117.5
## + EducationField.Other 1 2049.6 2117.6
## + DistanceFromHome 1 2049.7 2117.7
## + `JobRole.Human Resources` 1 2049.7 2117.7
## + Education.Bachelor 1 2049.7 2117.7
## + `Department.Research & Development` 1 2049.7 2117.7
## + Department.Sales 1 2049.7 2117.7
## + JobSatisfaction.NA 1 2049.8 2117.8
## + JobSatisfaction.Medium 1 2049.8 2117.8
## + JobSatisfaction.High 1 2049.8 2117.8
## + JobRole.Manager 1 2049.8 2117.8
## - `JobRole.Manufacturing Director` 1 2053.9 2117.9
## - `BusinessTravel.Non-Travel` 1 2054.8 2118.8
## - `Department.Human Resources` 1 2054.8 2118.8
## - Education.Doctor 1 2054.9 2118.9
## - `JobRole.Research Director` 1 2056.8 2120.8
## - `JobRole.Research Scientist` 1 2056.9 2120.9
## - TrainingTimesLastYear 1 2058.7 2122.7
## - Age 1 2060.1 2124.1
## - WorkLifeBalance.Good 1 2060.8 2124.8
## - `JobRole.Sales Executive` 1 2060.8 2124.8
## - JobSatisfaction.Low 1 2061.9 2125.9
## - NumCompaniesWorked 1 2071.5 2135.5
## - JobSatisfaction.VeryHigh 1 2072.1 2136.1
## - TotalWorkingYears 1 2078.0 2142.0
## - YearsWithCurrManager 1 2087.1 2151.1
## - WorkLifeBalance.Bad 1 2088.1 2152.1
## - EnvironmentSatisfaction 1 2088.9 2152.9
## - BusinessTravel.Travel_Frequently 1 2095.6 2159.6
## - YearsSinceLastPromotion 1 2100.7 2164.7
## - MaritalStatus.Divorced 1 2101.4 2165.4
## - MaritalStatus.Married 1 2110.6 2174.6
## - OfficeAvgduration 1 2175.3 2239.3
##
## Step: AIC=2115.27
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + EducationField.Medical +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## NumCompaniesWorked + PercentSalaryHike + TotalWorkingYears +
## TrainingTimesLastYear + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - EducationField.Medical 1 2052.9 2114.9
## - Education.College 1 2053.1 2115.1
## - `EducationField.Life Sciences` 1 2053.2 2115.2
## - WorkLifeBalance.Best 1 2053.2 2115.2
## <none> 2051.3 2115.3
## - JobInvolvement.High 1 2053.4 2115.4
## - PercentSalaryHike 1 2053.7 2115.7
## + YearsAtCompany 1 2049.8 2115.8
## - JobInvolvement.Low 1 2053.8 2115.8
## + MonthlyIncome 1 2049.8 2115.8
## + JobLevel 1 2049.9 2115.9
## + StockOptionLevel 1 2049.9 2115.9
## + Gender.Female 1 2050.0 2116.0
## + Gender.Male 1 2050.0 2116.0
## - `JobRole.Laboratory Technician` 1 2054.2 2116.2
## - `EducationField.Human Resources` 1 2054.4 2116.4
## + `JobRole.Sales Representative` 1 2050.6 2116.6
## + EducationField.Marketing 1 2050.7 2116.7
## + WorkLifeBalance.Better 1 2050.7 2116.7
## + WorkLifeBalance.NA 1 2050.7 2116.7
## + Education.BelowCollege 1 2050.8 2116.8
## + JobInvolvement.Medium 1 2050.8 2116.8
## + JobInvolvement.VeryHigh 1 2050.8 2116.8
## + `JobRole.Healthcare Representative` 1 2050.9 2116.9
## + PerformanceRating.Excellent 1 2050.9 2116.9
## + PerformanceRating.Outstanding 1 2050.9 2116.9
## + Education.Master 1 2050.9 2116.9
## + `EducationField.Technical Degree` 1 2051.0 2117.0
## + EducationField.Other 1 2051.2 2117.2
## + Education.Bachelor 1 2051.2 2117.2
## + DistanceFromHome 1 2051.3 2117.3
## + `JobRole.Human Resources` 1 2051.3 2117.3
## + `Department.Research & Development` 1 2051.3 2117.3
## + Department.Sales 1 2051.3 2117.3
## + JobSatisfaction.NA 1 2051.3 2117.3
## + JobSatisfaction.High 1 2051.3 2117.3
## + JobSatisfaction.Medium 1 2051.3 2117.3
## + JobRole.Manager 1 2051.3 2117.3
## - `JobRole.Manufacturing Director` 1 2055.5 2117.5
## - `BusinessTravel.Non-Travel` 1 2056.2 2118.2
## - `Department.Human Resources` 1 2056.4 2118.4
## - Education.Doctor 1 2056.6 2118.6
## - `JobRole.Research Scientist` 1 2058.1 2120.1
## - `JobRole.Research Director` 1 2058.2 2120.2
## - TrainingTimesLastYear 1 2060.3 2122.3
## - `JobRole.Sales Executive` 1 2061.9 2123.9
## - WorkLifeBalance.Good 1 2062.0 2124.0
## - Age 1 2062.5 2124.5
## - JobSatisfaction.Low 1 2062.9 2124.9
## - NumCompaniesWorked 1 2071.5 2133.5
## - JobSatisfaction.VeryHigh 1 2073.3 2135.3
## - TotalWorkingYears 1 2079.8 2141.8
## - WorkLifeBalance.Bad 1 2089.2 2151.2
## - EnvironmentSatisfaction 1 2089.9 2151.9
## - YearsWithCurrManager 1 2095.5 2157.5
## - BusinessTravel.Travel_Frequently 1 2097.2 2159.2
## - MaritalStatus.Divorced 1 2101.7 2163.7
## - MaritalStatus.Married 1 2111.8 2173.8
## - YearsSinceLastPromotion 1 2116.7 2178.7
## - OfficeAvgduration 1 2176.3 2238.3
##
## Step: AIC=2114.88
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `EducationField.Life Sciences` + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + NumCompaniesWorked +
## PercentSalaryHike + TotalWorkingYears + TrainingTimesLastYear +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - `EducationField.Life Sciences` 1 2053.5 2113.5
## - Education.College 1 2054.8 2114.8
## <none> 2052.9 2114.9
## - JobInvolvement.High 1 2055.0 2115.0
## - WorkLifeBalance.Best 1 2055.1 2115.1
## - `EducationField.Human Resources` 1 2055.2 2115.2
## + EducationField.Medical 1 2051.3 2115.3
## + JobLevel 1 2051.4 2115.4
## - JobInvolvement.Low 1 2055.4 2115.4
## - PercentSalaryHike 1 2055.5 2115.5
## + YearsAtCompany 1 2051.5 2115.5
## + MonthlyIncome 1 2051.6 2115.6
## + Gender.Female 1 2051.6 2115.6
## + Gender.Male 1 2051.6 2115.6
## + `EducationField.Technical Degree` 1 2051.8 2115.8
## + StockOptionLevel 1 2051.8 2115.8
## - `JobRole.Laboratory Technician` 1 2055.8 2115.8
## + EducationField.Other 1 2052.2 2116.2
## + `JobRole.Sales Representative` 1 2052.3 2116.3
## + WorkLifeBalance.Better 1 2052.3 2116.3
## + WorkLifeBalance.NA 1 2052.3 2116.3
## + Education.BelowCollege 1 2052.4 2116.4
## + `JobRole.Healthcare Representative` 1 2052.5 2116.5
## + PerformanceRating.Excellent 1 2052.5 2116.5
## + PerformanceRating.Outstanding 1 2052.5 2116.5
## + JobInvolvement.Medium 1 2052.5 2116.5
## + JobInvolvement.VeryHigh 1 2052.5 2116.5
## + Education.Master 1 2052.5 2116.5
## + `Department.Research & Development` 1 2052.6 2116.6
## + Department.Sales 1 2052.6 2116.6
## + DistanceFromHome 1 2052.9 2116.9
## + Education.Bachelor 1 2052.9 2116.9
## + EducationField.Marketing 1 2052.9 2116.9
## + `JobRole.Human Resources` 1 2052.9 2116.9
## + JobSatisfaction.NA 1 2052.9 2116.9
## + JobRole.Manager 1 2052.9 2116.9
## + JobSatisfaction.High 1 2052.9 2116.9
## + JobSatisfaction.Medium 1 2052.9 2116.9
## - `JobRole.Manufacturing Director` 1 2057.0 2117.0
## - `BusinessTravel.Non-Travel` 1 2057.7 2117.7
## - Education.Doctor 1 2058.0 2118.0
## - `Department.Human Resources` 1 2058.2 2118.2
## - `JobRole.Research Director` 1 2059.6 2119.6
## - `JobRole.Research Scientist` 1 2060.0 2120.0
## - TrainingTimesLastYear 1 2061.7 2121.7
## - WorkLifeBalance.Good 1 2063.5 2123.5
## - `JobRole.Sales Executive` 1 2063.6 2123.6
## - Age 1 2064.1 2124.1
## - JobSatisfaction.Low 1 2064.3 2124.3
## - NumCompaniesWorked 1 2072.7 2132.7
## - JobSatisfaction.VeryHigh 1 2075.4 2135.4
## - TotalWorkingYears 1 2081.5 2141.5
## - EnvironmentSatisfaction 1 2090.9 2150.9
## - WorkLifeBalance.Bad 1 2091.1 2151.1
## - YearsWithCurrManager 1 2097.0 2157.0
## - BusinessTravel.Travel_Frequently 1 2099.3 2159.3
## - MaritalStatus.Divorced 1 2103.1 2163.1
## - MaritalStatus.Married 1 2113.8 2173.8
## - YearsSinceLastPromotion 1 2118.2 2178.2
## - OfficeAvgduration 1 2178.2 2238.2
##
## Step: AIC=2113.49
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.College + Education.Doctor + `EducationField.Human Resources` +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced + MaritalStatus.Married +
## NumCompaniesWorked + PercentSalaryHike + TotalWorkingYears +
## TrainingTimesLastYear + YearsSinceLastPromotion + YearsWithCurrManager +
## EnvironmentSatisfaction + JobSatisfaction.Low + JobSatisfaction.VeryHigh +
## WorkLifeBalance.Bad + WorkLifeBalance.Best + WorkLifeBalance.Good +
## JobInvolvement.High + JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## - Education.College 1 2055.4 2113.4
## <none> 2053.5 2113.5
## - JobInvolvement.High 1 2055.5 2113.5
## - `EducationField.Human Resources` 1 2055.7 2113.7
## - WorkLifeBalance.Best 1 2055.7 2113.7
## + `EducationField.Technical Degree` 1 2052.0 2114.0
## - JobInvolvement.Low 1 2056.0 2114.0
## + JobLevel 1 2052.1 2114.1
## - PercentSalaryHike 1 2056.1 2114.1
## + YearsAtCompany 1 2052.2 2114.2
## + MonthlyIncome 1 2052.2 2114.2
## + Gender.Female 1 2052.2 2114.2
## + Gender.Male 1 2052.2 2114.2
## + StockOptionLevel 1 2052.3 2114.3
## - `JobRole.Laboratory Technician` 1 2056.3 2114.3
## + EducationField.Other 1 2052.6 2114.6
## + `JobRole.Sales Representative` 1 2052.9 2114.9
## + `EducationField.Life Sciences` 1 2052.9 2114.9
## + WorkLifeBalance.Better 1 2052.9 2114.9
## + WorkLifeBalance.NA 1 2052.9 2114.9
## + JobInvolvement.Medium 1 2053.1 2115.1
## + JobInvolvement.VeryHigh 1 2053.1 2115.1
## + Education.BelowCollege 1 2053.1 2115.1
## + PerformanceRating.Excellent 1 2053.1 2115.1
## + PerformanceRating.Outstanding 1 2053.1 2115.1
## + `JobRole.Healthcare Representative` 1 2053.1 2115.1
## + `Department.Research & Development` 1 2053.1 2115.1
## + Department.Sales 1 2053.1 2115.1
## + Education.Master 1 2053.2 2115.2
## + EducationField.Medical 1 2053.2 2115.2
## + EducationField.Marketing 1 2053.4 2115.4
## + Education.Bachelor 1 2053.5 2115.5
## + DistanceFromHome 1 2053.5 2115.5
## + `JobRole.Human Resources` 1 2053.5 2115.5
## + JobSatisfaction.NA 1 2053.5 2115.5
## + JobSatisfaction.High 1 2053.5 2115.5
## + JobRole.Manager 1 2053.5 2115.5
## + JobSatisfaction.Medium 1 2053.5 2115.5
## - `JobRole.Manufacturing Director` 1 2057.5 2115.5
## - `BusinessTravel.Non-Travel` 1 2058.3 2116.3
## - Education.Doctor 1 2058.6 2116.6
## - `Department.Human Resources` 1 2058.7 2116.7
## - `JobRole.Research Director` 1 2060.1 2118.1
## - `JobRole.Research Scientist` 1 2060.5 2118.5
## - TrainingTimesLastYear 1 2062.1 2120.1
## - `JobRole.Sales Executive` 1 2064.0 2122.0
## - WorkLifeBalance.Good 1 2064.1 2122.1
## - Age 1 2064.8 2122.8
## - JobSatisfaction.Low 1 2065.3 2123.3
## - NumCompaniesWorked 1 2073.5 2131.5
## - JobSatisfaction.VeryHigh 1 2075.8 2133.8
## - TotalWorkingYears 1 2082.1 2140.1
## - EnvironmentSatisfaction 1 2091.2 2149.2
## - WorkLifeBalance.Bad 1 2091.8 2149.8
## - YearsWithCurrManager 1 2097.2 2155.2
## - BusinessTravel.Travel_Frequently 1 2099.4 2157.4
## - MaritalStatus.Divorced 1 2105.2 2163.2
## - MaritalStatus.Married 1 2115.3 2173.3
## - YearsSinceLastPromotion 1 2118.4 2176.4
## - OfficeAvgduration 1 2178.7 2236.7
##
## Step: AIC=2113.42
## consolidated_employee_regression_train$Attrition ~ Age + `BusinessTravel.Non-Travel` +
## BusinessTravel.Travel_Frequently + `Department.Human Resources` +
## Education.Doctor + `EducationField.Human Resources` + `JobRole.Laboratory Technician` +
## `JobRole.Manufacturing Director` + `JobRole.Research Director` +
## `JobRole.Research Scientist` + `JobRole.Sales Executive` +
## MaritalStatus.Divorced + MaritalStatus.Married + NumCompaniesWorked +
## PercentSalaryHike + TotalWorkingYears + TrainingTimesLastYear +
## YearsSinceLastPromotion + YearsWithCurrManager + EnvironmentSatisfaction +
## JobSatisfaction.Low + JobSatisfaction.VeryHigh + WorkLifeBalance.Bad +
## WorkLifeBalance.Best + WorkLifeBalance.Good + JobInvolvement.High +
## JobInvolvement.Low + OfficeAvgduration
##
## Df Deviance AIC
## <none> 2055.4 2113.4
## + Education.College 1 2053.5 2113.5
## - WorkLifeBalance.Best 1 2057.5 2113.5
## - JobInvolvement.High 1 2057.8 2113.8
## - `EducationField.Human Resources` 1 2057.9 2113.9
## - JobInvolvement.Low 1 2058.0 2114.0
## + JobLevel 1 2054.1 2114.1
## + `EducationField.Technical Degree` 1 2054.1 2114.1
## + YearsAtCompany 1 2054.1 2114.1
## + MonthlyIncome 1 2054.1 2114.1
## + StockOptionLevel 1 2054.2 2114.2
## + Gender.Female 1 2054.2 2114.2
## + Gender.Male 1 2054.2 2114.2
## - PercentSalaryHike 1 2058.2 2114.2
## - `JobRole.Laboratory Technician` 1 2058.4 2114.4
## + EducationField.Other 1 2054.4 2114.4
## + Education.Master 1 2054.4 2114.4
## + `EducationField.Life Sciences` 1 2054.8 2114.8
## + WorkLifeBalance.Better 1 2054.9 2114.9
## + WorkLifeBalance.NA 1 2054.9 2114.9
## + `JobRole.Sales Representative` 1 2054.9 2114.9
## + JobInvolvement.Medium 1 2054.9 2114.9
## + JobInvolvement.VeryHigh 1 2054.9 2114.9
## + `JobRole.Healthcare Representative` 1 2055.0 2115.0
## + PerformanceRating.Excellent 1 2055.1 2115.1
## + PerformanceRating.Outstanding 1 2055.1 2115.1
## + `Department.Research & Development` 1 2055.1 2115.1
## + Department.Sales 1 2055.1 2115.1
## + EducationField.Medical 1 2055.1 2115.1
## + Education.Bachelor 1 2055.2 2115.2
## + Education.BelowCollege 1 2055.3 2115.3
## + EducationField.Marketing 1 2055.3 2115.3
## + DistanceFromHome 1 2055.4 2115.4
## - `JobRole.Manufacturing Director` 1 2059.4 2115.4
## + JobRole.Manager 1 2055.4 2115.4
## + JobSatisfaction.NA 1 2055.4 2115.4
## + `JobRole.Human Resources` 1 2055.4 2115.4
## + JobSatisfaction.Medium 1 2055.4 2115.4
## + JobSatisfaction.High 1 2055.4 2115.4
## - `BusinessTravel.Non-Travel` 1 2060.1 2116.1
## - `Department.Human Resources` 1 2060.4 2116.4
## - Education.Doctor 1 2061.3 2117.3
## - `JobRole.Research Director` 1 2061.6 2117.6
## - `JobRole.Research Scientist` 1 2062.3 2118.3
## - TrainingTimesLastYear 1 2065.2 2121.2
## - WorkLifeBalance.Good 1 2066.0 2122.0
## - `JobRole.Sales Executive` 1 2066.3 2122.3
## - Age 1 2066.4 2122.4
## - JobSatisfaction.Low 1 2066.9 2122.9
## - NumCompaniesWorked 1 2074.9 2130.9
## - JobSatisfaction.VeryHigh 1 2078.7 2134.7
## - TotalWorkingYears 1 2084.7 2140.7
## - WorkLifeBalance.Bad 1 2092.8 2148.8
## - EnvironmentSatisfaction 1 2092.8 2148.8
## - YearsWithCurrManager 1 2100.2 2156.2
## - BusinessTravel.Travel_Frequently 1 2101.2 2157.2
## - MaritalStatus.Divorced 1 2107.9 2163.9
## - MaritalStatus.Married 1 2118.2 2174.2
## - YearsSinceLastPromotion 1 2120.7 2176.7
## - OfficeAvgduration 1 2180.9 2236.9
##
## Call: glm(formula = consolidated_employee_regression_train$Attrition ~
## Age + `BusinessTravel.Non-Travel` + BusinessTravel.Travel_Frequently +
## `Department.Human Resources` + Education.Doctor + `EducationField.Human Resources` +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced +
## MaritalStatus.Married + NumCompaniesWorked + PercentSalaryHike +
## TotalWorkingYears + TrainingTimesLastYear + YearsSinceLastPromotion +
## YearsWithCurrManager + EnvironmentSatisfaction + JobSatisfaction.Low +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## OfficeAvgduration, family = binomial(link = "logit"),
## data = consolidated_employee_regression_train)
##
## Coefficients:
## (Intercept) Age
## -2.74714 -0.02854
## `BusinessTravel.Non-Travel` BusinessTravel.Travel_Frequently
## -0.47605 0.90615
## `Department.Human Resources` Education.Doctor
## 0.76016 -0.81888
## `EducationField.Human Resources` `JobRole.Laboratory Technician`
## 0.72295 0.30937
## `JobRole.Manufacturing Director` `JobRole.Research Director`
## -0.46996 0.65161
## `JobRole.Research Scientist` `JobRole.Sales Executive`
## 0.44670 0.54005
## MaritalStatus.Divorced MaritalStatus.Married
## -1.17230 -0.98434
## NumCompaniesWorked PercentSalaryHike
## 0.10783 0.02585
## TotalWorkingYears TrainingTimesLastYear
## -0.07342 -0.14009
## YearsSinceLastPromotion YearsWithCurrManager
## 0.19554 -0.15966
## EnvironmentSatisfaction JobSatisfaction.Low
## -0.31531 0.48627
## JobSatisfaction.VeryHigh WorkLifeBalance.Bad
## -0.66474 1.37049
## WorkLifeBalance.Best WorkLifeBalance.Good
## 0.27686 0.44631
## JobInvolvement.High JobInvolvement.Low
## -0.18616 0.37372
## OfficeAvgduration
## 0.44872
##
## Degrees of Freedom: 3035 Total (i.e. Null); 3007 Residual
## (35 observations deleted due to missingness)
## Null Deviance: 2674
## Residual Deviance: 2055 AIC: 2113
Here we have taken the model which has lowest AIC value and generated the model object. Coefficients are plotted.
set.seed(3421)
reg_modelstudent_step <- glm(formula = consolidated_employee_regression_train$Attrition ~
Age + `BusinessTravel.Non-Travel` + BusinessTravel.Travel_Frequently +
`Department.Human Resources` + Education.Doctor + `EducationField.Human Resources` +
`JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
`JobRole.Research Director` + `JobRole.Research Scientist` +
`JobRole.Sales Executive` + MaritalStatus.Divorced +
MaritalStatus.Married + NumCompaniesWorked + PercentSalaryHike +
TotalWorkingYears + TrainingTimesLastYear + YearsSinceLastPromotion +
YearsWithCurrManager + EnvironmentSatisfaction + JobSatisfaction.Low +
JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
OfficeAvgduration, family = binomial(link = "logit"),
data = consolidated_employee_regression_train, na.action = na.exclude)
coefficients(reg_modelstudent_step)
## (Intercept) Age
## -2.74713919 -0.02853725
## `BusinessTravel.Non-Travel` BusinessTravel.Travel_Frequently
## -0.47604790 0.90615039
## `Department.Human Resources` Education.Doctor
## 0.76015541 -0.81888491
## `EducationField.Human Resources` `JobRole.Laboratory Technician`
## 0.72295492 0.30937130
## `JobRole.Manufacturing Director` `JobRole.Research Director`
## -0.46996313 0.65161036
## `JobRole.Research Scientist` `JobRole.Sales Executive`
## 0.44670358 0.54005491
## MaritalStatus.Divorced MaritalStatus.Married
## -1.17230434 -0.98434268
## NumCompaniesWorked PercentSalaryHike
## 0.10783394 0.02584616
## TotalWorkingYears TrainingTimesLastYear
## -0.07342178 -0.14008559
## YearsSinceLastPromotion YearsWithCurrManager
## 0.19553746 -0.15966305
## EnvironmentSatisfaction JobSatisfaction.Low
## -0.31530763 0.48627434
## JobSatisfaction.VeryHigh WorkLifeBalance.Bad
## -0.66473929 1.37049437
## WorkLifeBalance.Best WorkLifeBalance.Good
## 0.27685921 0.44631328
## JobInvolvement.High JobInvolvement.Low
## -0.18615635 0.37371650
## OfficeAvgduration
## 0.44871987
summary(reg_modelstudent_step)
##
## Call:
## glm(formula = consolidated_employee_regression_train$Attrition ~
## Age + `BusinessTravel.Non-Travel` + BusinessTravel.Travel_Frequently +
## `Department.Human Resources` + Education.Doctor + `EducationField.Human Resources` +
## `JobRole.Laboratory Technician` + `JobRole.Manufacturing Director` +
## `JobRole.Research Director` + `JobRole.Research Scientist` +
## `JobRole.Sales Executive` + MaritalStatus.Divorced +
## MaritalStatus.Married + NumCompaniesWorked + PercentSalaryHike +
## TotalWorkingYears + TrainingTimesLastYear + YearsSinceLastPromotion +
## YearsWithCurrManager + EnvironmentSatisfaction + JobSatisfaction.Low +
## JobSatisfaction.VeryHigh + WorkLifeBalance.Bad + WorkLifeBalance.Best +
## WorkLifeBalance.Good + JobInvolvement.High + JobInvolvement.Low +
## OfficeAvgduration, family = binomial(link = "logit"),
## data = consolidated_employee_regression_train, na.action = na.exclude)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9109 -0.5427 -0.3361 -0.1634 3.8737
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.747139 0.520511 -5.278 1.31e-07 ***
## Age -0.028537 0.008767 -3.255 0.001134 **
## `BusinessTravel.Non-Travel` -0.476048 0.229773 -2.072 0.038282 *
## BusinessTravel.Travel_Frequently 0.906150 0.131998 6.865 6.66e-12 ***
## `Department.Human Resources` 0.760155 0.325931 2.332 0.019687 *
## Education.Doctor -0.818885 0.362578 -2.259 0.023914 *
## `EducationField.Human Resources` 0.722955 0.465152 1.554 0.120129
## `JobRole.Laboratory Technician` 0.309371 0.179854 1.720 0.085410 .
## `JobRole.Manufacturing Director` -0.469963 0.240476 -1.954 0.050665 .
## `JobRole.Research Director` 0.651610 0.256371 2.542 0.011032 *
## `JobRole.Research Scientist` 0.446704 0.170501 2.620 0.008795 **
## `JobRole.Sales Executive` 0.540055 0.164361 3.286 0.001017 **
## MaritalStatus.Divorced -1.172304 0.170484 -6.876 6.14e-12 ***
## MaritalStatus.Married -0.984343 0.125746 -7.828 4.96e-15 ***
## NumCompaniesWorked 0.107834 0.024134 4.468 7.89e-06 ***
## PercentSalaryHike 0.025846 0.015438 1.674 0.094090 .
## TotalWorkingYears -0.073422 0.014046 -5.227 1.72e-07 ***
## TrainingTimesLastYear -0.140086 0.045342 -3.090 0.002005 **
## YearsSinceLastPromotion 0.195537 0.023796 8.217 < 2e-16 ***
## YearsWithCurrManager -0.159663 0.024445 -6.532 6.51e-11 ***
## EnvironmentSatisfaction -0.315308 0.051905 -6.075 1.24e-09 ***
## JobSatisfaction.Low 0.486274 0.142264 3.418 0.000631 ***
## JobSatisfaction.VeryHigh -0.664739 0.141182 -4.708 2.50e-06 ***
## WorkLifeBalance.Bad 1.370494 0.214015 6.404 1.52e-10 ***
## WorkLifeBalance.Best 0.276859 0.188542 1.468 0.141990
## WorkLifeBalance.Good 0.446313 0.136060 3.280 0.001037 **
## JobInvolvement.High -0.186156 0.121249 -1.535 0.124706
## JobInvolvement.Low 0.373716 0.231029 1.618 0.105745
## OfficeAvgduration 0.448720 0.040649 11.039 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2673.8 on 3035 degrees of freedom
## Residual deviance: 2055.4 on 3007 degrees of freedom
## (35 observations deleted due to missingness)
## AIC: 2113.4
##
## Number of Fisher Scoring iterations: 6
coefplot.glm(reg_modelstudent_step,parm = -1)
### Test multicollinearity in the model . As seen below, all X variables in the model have VIF well below 4.
vif(reg_modelstudent_step)
## Age `BusinessTravel.Non-Travel`
## 1.807203 1.050606
## BusinessTravel.Travel_Frequently `Department.Human Resources`
## 1.079897 1.933389
## Education.Doctor `EducationField.Human Resources`
## 1.039925 1.922039
## `JobRole.Laboratory Technician` `JobRole.Manufacturing Director`
## 1.455272 1.231512
## `JobRole.Research Director` `JobRole.Research Scientist`
## 1.218529 1.516131
## `JobRole.Sales Executive` MaritalStatus.Divorced
## 1.597109 1.198932
## MaritalStatus.Married NumCompaniesWorked
## 1.205663 1.260971
## PercentSalaryHike TotalWorkingYears
## 1.031695 2.516941
## TrainingTimesLastYear YearsSinceLastPromotion
## 1.022945 1.929559
## YearsWithCurrManager EnvironmentSatisfaction
## 1.860092 1.050004
## JobSatisfaction.Low JobSatisfaction.VeryHigh
## 1.151907 1.162394
## WorkLifeBalance.Bad WorkLifeBalance.Best
## 1.091912 1.086528
## WorkLifeBalance.Good JobInvolvement.High
## 1.123729 1.142761
## JobInvolvement.Low OfficeAvgduration
## 1.142721 1.061438
Note that thevalidtaion dataframe has some rows with null values and they need to be removed and then used for prediction
row.has.na <- apply(consolidated_employee_regression_val, 1, function(x){any(is.na(x))})
sum(row.has.na)
## [1] 18
consolidated_employee_regression_val_filtered <- consolidated_employee_regression_val[!row.has.na,]
consolidated_employee_regression_val_filtered$AttritionProb <- predict(reg_modelstudent_step, newdata=consolidated_employee_regression_val_filtered, type="response")
# consolidated_employee_regression_val$AttritionProb <- predict(reg_modelstudent_step, newdata=consolidated_employee_regression_val, type="response",na.action = na.exclude)
consolidated_employee_regression_val_filtered$AttritionPredicted <- ifelse(consolidated_employee_regression_val_filtered$AttritionProb > 0.5,1,0) ### assigning the probability to value
EmployeeAttrition <- table(actualclass=consolidated_employee_regression_val_filtered$Attrition, predictedclass=consolidated_employee_regression_val_filtered$AttritionPredicted)
confusionMatrix(EmployeeAttrition)
## Confusion Matrix and Statistics
##
## predictedclass
## actualclass 0 1
## 0 1076 32
## 1 159 54
##
## Accuracy : 0.8554
## 95% CI : (0.8353, 0.8739)
## No Information Rate : 0.9349
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.2959
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.8713
## Specificity : 0.6279
## Pos Pred Value : 0.9711
## Neg Pred Value : 0.2535
## Prevalence : 0.9349
## Detection Rate : 0.8145
## Detection Prevalence : 0.8388
## Balanced Accuracy : 0.7496
##
## 'Positive' Class : 0
##
EmployeeAttritionMatrix <- confusionMatrix(EmployeeAttrition)
print(EmployeeAttritionMatrix)
## Confusion Matrix and Statistics
##
## predictedclass
## actualclass 0 1
## 0 1076 32
## 1 159 54
##
## Accuracy : 0.8554
## 95% CI : (0.8353, 0.8739)
## No Information Rate : 0.9349
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.2959
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.8713
## Specificity : 0.6279
## Pos Pred Value : 0.9711
## Neg Pred Value : 0.2535
## Prevalence : 0.9349
## Detection Rate : 0.8145
## Detection Prevalence : 0.8388
## Balanced Accuracy : 0.7496
##
## 'Positive' Class : 0
##
Some of the coefficients are still high and that reduces the risk of model being iverfitting. We will use lasso regression regularisation model here for fine-tuning the coefficients. Important point to note is that we’ll use the function cv.glmnet, which automatically performs a grid search to find the optimal value of lambda.
The glmnet function model.matrix creates the matrix and also converts categorical predictors to appropriate dummy variables.
The plot shows that the log of the optimal value of lambda (i.e. the one that minimises the root mean square error) is approximately -6. The exact value can be viewed by examining the variable lambda_min in the code below. In general though, the objective of regularisation is to balance accuracy and simplicity.
The output coef shows that only those variables that we had determined to be significant on the basis of p-values have non-zero coefficients.The coefficients of all other variables have been set to zero by the algorithm! Lasso has reduced the complexity of the fitting function massively
row.has.na_trn <- apply(consolidated_employee_regression_train, 1, function(x){any(is.na(x))})
sum(row.has.na_trn)
## [1] 35
consolidated_employee_regression_train_filtered <- consolidated_employee_regression_train[!row.has.na_trn,]
#convert training data to matrix format
xInput <- model.matrix(consolidated_employee_regression_train_filtered$Attrition~.,consolidated_employee_regression_train_filtered)
yResponse <- consolidated_employee_regression_train_filtered$Attrition
#perform grid search to find optimal value of lambda #family= binomial => logistic regression, alpha=1 => lasso
Employeecv.out <- cv.glmnet(xInput,yResponse, alpha=1, family="binomial", type.measure = "class")
#plot result
plot(Employeecv.out)
#min value of lambda
lambda_min <- Employeecv.out$lambda.min
#best value of lambda
lambda_1se <- Employeecv.out$lambda.1se
lambda_1se
## [1] 0.008711393
#regression coefficients
coef(Employeecv.out,s=lambda_1se)
## 65 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) -3.102583695
## (Intercept) .
## Age -0.018037705
## `BusinessTravel.Non-Travel` -0.187340587
## BusinessTravel.Travel_Frequently 0.648785428
## BusinessTravel.Travel_Rarely .
## `Department.Human Resources` 0.448111748
## `Department.Research & Development` .
## Department.Sales .
## DistanceFromHome .
## Education.Bachelor .
## Education.BelowCollege .
## Education.College 0.050442331
## Education.Doctor -0.147145892
## Education.Master .
## `EducationField.Human Resources` 0.502228683
## `EducationField.Life Sciences` .
## EducationField.Marketing .
## EducationField.Medical .
## EducationField.Other .
## `EducationField.Technical Degree` -0.019872633
## EmployeeCount .
## Gender.Female .
## Gender.Male .
## JobLevel .
## `JobRole.Healthcare Representative` .
## `JobRole.Human Resources` .
## `JobRole.Laboratory Technician` .
## JobRole.Manager -0.013148895
## `JobRole.Manufacturing Director` -0.327248865
## `JobRole.Research Director` 0.016752683
## `JobRole.Research Scientist` .
## `JobRole.Sales Executive` 0.040457177
## `JobRole.Sales Representative` -0.093015980
## MaritalStatus.Divorced -0.029924613
## MaritalStatus.Married .
## MaritalStatus.Single 0.791627971
## MonthlyIncome .
## NumCompaniesWorked 0.048682074
## PercentSalaryHike 0.006034498
## StandardHours .
## StockOptionLevel .
## TotalWorkingYears -0.042886061
## TrainingTimesLastYear -0.048081530
## YearsAtCompany .
## YearsSinceLastPromotion 0.083469293
## YearsWithCurrManager -0.099049961
## EnvironmentSatisfaction -0.202395024
## JobSatisfaction.High .
## JobSatisfaction.Low 0.270662708
## JobSatisfaction.Medium .
## JobSatisfaction.VeryHigh -0.434123270
## JobSatisfaction.NA .
## WorkLifeBalance.Bad 0.683544734
## WorkLifeBalance.Best .
## WorkLifeBalance.Better -0.219772865
## WorkLifeBalance.Good .
## WorkLifeBalance.NA .
## JobInvolvement.High .
## JobInvolvement.Low 0.180668452
## JobInvolvement.Medium .
## JobInvolvement.VeryHigh .
## PerformanceRating.Excellent .
## PerformanceRating.Outstanding .
## OfficeAvgduration 0.362464419
Let’s see by running the model against our test data:
#get test data
x_test <- model.matrix(consolidated_employee_regression_val$Attrition~.,consolidated_employee_regression_val)
#predict class, type="class"
lasso_prob <- predict(Employeecv.out, newx = x_test, s=lambda_1se,type="response")
consolidated_employee_regression_val_filtered$AttritionPredictedLasso <- ifelse(lasso_prob > 0.5,1,0) ### assigning the probability to value. Note here that we have taken the data frame where null values being removed because o\p-valuye is not there for null values,
EmployeeAttritionLasso <- table(actualclass=consolidated_employee_regression_val_filtered$Attrition, predictedclass=consolidated_employee_regression_val_filtered$AttritionPredictedLasso)
confusionMatrix(EmployeeAttritionLasso)
## Confusion Matrix and Statistics
##
## predictedclass
## actualclass 0 1
## 0 1096 12
## 1 185 28
##
## Accuracy : 0.8509
## 95% CI : (0.8305, 0.8697)
## No Information Rate : 0.9697
## P-Value [Acc > NIR] : 1
##
## Kappa : 0.1795
## Mcnemar's Test P-Value : <2e-16
##
## Sensitivity : 0.8556
## Specificity : 0.7000
## Pos Pred Value : 0.9892
## Neg Pred Value : 0.1315
## Prevalence : 0.9697
## Detection Rate : 0.8297
## Detection Prevalence : 0.8388
## Balanced Accuracy : 0.7778
##
## 'Positive' Class : 0
##