# View the M3EtsTotaldata
M3EtsTotal
# pcbars for M3EtsTotal data
# input: A data frame containing columns category, case, total
# for forecasts within 95 %
# conf. interval of estimatePercentageErrors by default: 95%
category <- paste("ETS_with_horizon =", unique(M3EtsTotal$horizon))
cases <- M3EtsTotal$forecasts_within_95
total <- M3EtsTotal$total_forecast
df1 <- data.frame(category, cases, total)
estimatePercentageErrors(df1)

# pcbars for M3total data
# input: A data frame containing columns category, case, total
# for forecasts within 80 %
# conf. interval of estimatePercentageErrors by default: 95%
category <- paste("ETS_with_horizon =", unique(M3EtsTotal$horizon))
cases <- M3EtsTotal$forecasts_within_80
total <- M3EtsTotal$total_forecast
df2 <- data.frame(category, cases, total)
estimatePercentageErrors(df2)

category <- c("forecast within 80%", "forecast within 95%")
cases <- c(sum(M3EtsTotal$forecasts_within_80), sum(M3EtsTotal$forecasts_within_95))
total <- sum(M3EtsTotal$total_forecast)
df3 <- data.frame(category, cases, total)
estimatePercentageErrors(df3, conf.level = 0.8)

Анализ в разрезе типов рядов
# View the M3Arima_total_category data
M3Arima_total_category
# pcbars for M3Arima_total_category data
# input: A data frame containing columns category, case, total
# for forecasts within 95 %
# conf. interval of estimatePercentageErrors by default: 95%
category <- M3Arima_total_category$category
cases <- M3Arima_total_category$forecasts_within_95
total <- M3Arima_total_category$total_forecast
df4 <- data.frame(category, cases, total)
estimatePercentageErrors(df4)

# pcbars for M3Arima_total_category data
# input: A data frame containing columns category, case, total
# for forecasts within 80 %
# conf. interval of estimatePercentageErrors by default: 95%
category <- M3Arima_total_category$category
cases <- M3Arima_total_category$forecasts_within_80
total <- M3Arima_total_category$total_forecast
df5 <- data.frame(category, cases, total)
estimatePercentageErrors(df5)

LS0tDQp0aXRsZTogIk0zdG90YWxfZnJvbV9ldHMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQojIFZpZXcgdGhlIE0zRXRzVG90YWxkYXRhDQpNM0V0c1RvdGFsDQpgYGANCg0KDQoNCmBgYHtyLCBmaWcuaGVpZ2h0PSA4LCBmaWcud2lkdGg9MTJ9DQojIHBjYmFycyBmb3IgTTNFdHNUb3RhbCBkYXRhDQojIGlucHV0OiBBIGRhdGEgZnJhbWUgY29udGFpbmluZyBjb2x1bW5zIGNhdGVnb3J5LCBjYXNlLCB0b3RhbA0KIyBmb3IgZm9yZWNhc3RzIHdpdGhpbiA5NSAlDQojIGNvbmYuIGludGVydmFsIG9mIGVzdGltYXRlUGVyY2VudGFnZUVycm9ycyBieSBkZWZhdWx0OiA5NSUNCg0KY2F0ZWdvcnkgPC0gcGFzdGUoIkVUU193aXRoX2hvcml6b24gPSIsIHVuaXF1ZShNM0V0c1RvdGFsJGhvcml6b24pKQ0KY2FzZXMgPC0gTTNFdHNUb3RhbCRmb3JlY2FzdHNfd2l0aGluXzk1DQp0b3RhbCA8LSBNM0V0c1RvdGFsJHRvdGFsX2ZvcmVjYXN0DQpkZjEgPC0gZGF0YS5mcmFtZShjYXRlZ29yeSwgY2FzZXMsIHRvdGFsKQ0KZXN0aW1hdGVQZXJjZW50YWdlRXJyb3JzKGRmMSkNCmBgYA0KDQoNCg0KYGBge3IsIGZpZy5oZWlnaHQ9IDgsIGZpZy53aWR0aD0xMn0NCiMgcGNiYXJzIGZvciBNM3RvdGFsIGRhdGENCiMgaW5wdXQ6IEEgZGF0YSBmcmFtZSBjb250YWluaW5nIGNvbHVtbnMgY2F0ZWdvcnksIGNhc2UsIHRvdGFsDQojIGZvciBmb3JlY2FzdHMgd2l0aGluIDgwICUNCiMgY29uZi4gaW50ZXJ2YWwgb2YgZXN0aW1hdGVQZXJjZW50YWdlRXJyb3JzICBieSBkZWZhdWx0OiA5NSUNCg0KY2F0ZWdvcnkgPC0gcGFzdGUoIkVUU193aXRoX2hvcml6b24gPSIsIHVuaXF1ZShNM0V0c1RvdGFsJGhvcml6b24pKQ0KY2FzZXMgPC0gTTNFdHNUb3RhbCRmb3JlY2FzdHNfd2l0aGluXzgwDQp0b3RhbCA8LSBNM0V0c1RvdGFsJHRvdGFsX2ZvcmVjYXN0DQpkZjIgPC0gZGF0YS5mcmFtZShjYXRlZ29yeSwgY2FzZXMsIHRvdGFsKQ0KZXN0aW1hdGVQZXJjZW50YWdlRXJyb3JzKGRmMikNCmBgYA0KDQpgYGB7ciwgZmlnLmhlaWdodD0gOCwgZmlnLndpZHRoPTEyfQ0KDQpjYXRlZ29yeSA8LSBjKCJmb3JlY2FzdCB3aXRoaW4gODAlIiwgImZvcmVjYXN0IHdpdGhpbiA5NSUiKQ0KY2FzZXMgPC0gYyhzdW0oTTNFdHNUb3RhbCRmb3JlY2FzdHNfd2l0aGluXzgwKSwgc3VtKE0zRXRzVG90YWwkZm9yZWNhc3RzX3dpdGhpbl85NSkpDQp0b3RhbCA8LSBzdW0oTTNFdHNUb3RhbCR0b3RhbF9mb3JlY2FzdCkNCmRmMyA8LSBkYXRhLmZyYW1lKGNhdGVnb3J5LCBjYXNlcywgdG90YWwpDQplc3RpbWF0ZVBlcmNlbnRhZ2VFcnJvcnMoZGYzLCBjb25mLmxldmVsID0gMC44KQ0KYGBgDQoNCiMjIyDQkNC90LDQu9C40Lcg0LIg0YDQsNC30YDQtdC30LUg0YLQuNC/0L7QsiDRgNGP0LTQvtCyDQoNCmBgYHtyfQ0KIyBWaWV3IHRoZSBNM0FyaW1hX3RvdGFsX2NhdGVnb3J5IGRhdGENCk0zQXJpbWFfdG90YWxfY2F0ZWdvcnkNCmBgYA0KDQpgYGB7ciwgZmlnLmhlaWdodD0gOCwgZmlnLndpZHRoPTEyfQ0KIyBwY2JhcnMgZm9yIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkgZGF0YQ0KIyBpbnB1dDogQSBkYXRhIGZyYW1lIGNvbnRhaW5pbmcgY29sdW1ucyBjYXRlZ29yeSwgY2FzZSwgdG90YWwNCiMgZm9yIGZvcmVjYXN0cyB3aXRoaW4gOTUgJQ0KIyBjb25mLiBpbnRlcnZhbCBvZiBlc3RpbWF0ZVBlcmNlbnRhZ2VFcnJvcnMgYnkgZGVmYXVsdDogOTUlDQoNCmNhdGVnb3J5IDwtIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkkY2F0ZWdvcnkNCmNhc2VzIDwtIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkkZm9yZWNhc3RzX3dpdGhpbl85NQ0KdG90YWwgPC0gTTNBcmltYV90b3RhbF9jYXRlZ29yeSR0b3RhbF9mb3JlY2FzdA0KZGY0IDwtIGRhdGEuZnJhbWUoY2F0ZWdvcnksIGNhc2VzLCB0b3RhbCkNCmVzdGltYXRlUGVyY2VudGFnZUVycm9ycyhkZjQpDQpgYGANCg0KDQpgYGB7ciwgZmlnLmhlaWdodD0gOCwgZmlnLndpZHRoPTEyfQ0KIyBwY2JhcnMgZm9yIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkgZGF0YQ0KIyBpbnB1dDogQSBkYXRhIGZyYW1lIGNvbnRhaW5pbmcgY29sdW1ucyBjYXRlZ29yeSwgY2FzZSwgdG90YWwNCiMgZm9yIGZvcmVjYXN0cyB3aXRoaW4gODAgJQ0KIyBjb25mLiBpbnRlcnZhbCBvZiBlc3RpbWF0ZVBlcmNlbnRhZ2VFcnJvcnMgYnkgZGVmYXVsdDogOTUlDQoNCmNhdGVnb3J5IDwtIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkkY2F0ZWdvcnkNCmNhc2VzIDwtIE0zQXJpbWFfdG90YWxfY2F0ZWdvcnkkZm9yZWNhc3RzX3dpdGhpbl84MA0KdG90YWwgPC0gTTNBcmltYV90b3RhbF9jYXRlZ29yeSR0b3RhbF9mb3JlY2FzdA0KZGY1IDwtIGRhdGEuZnJhbWUoY2F0ZWdvcnksIGNhc2VzLCB0b3RhbCkNCmVzdGltYXRlUGVyY2VudGFnZUVycm9ycyhkZjUpDQpgYGANCg==