# View the M3total data
M3total
# pcbars for M3total data
# input: A data frame containing columns category, case, total
# for forecasts within 95 %
category <- paste("ARIMA_with_horizon =", unique(M3total$horizon))
cases <- M3total$forecasts_within_95
total <- M3total$total_forecast
df1 <- data.frame(category, cases, total)
estimatePercentageErrors(df1)

# pcbars for M3total data
# input: A data frame containing columns category, case, total
# for forecasts within 80 %
category <- paste("ARIMA_with_horizon =", unique(M3total$horizon))
cases <- M3total$forecasts_within_80
total <- M3total$total_forecast
df2 <- data.frame(category, cases, total)
estimatePercentageErrors(df2)

category <- c("forecast within 80%", "forecast within 95%")
cases <- c(sum(M3total$forecasts_within_80), sum(M3total$forecasts_within_95))
total <- sum(M3total$total_forecast)
df3 <- data.frame(category, cases, total)
estimatePercentageErrors(df3, conf.level = 0.8)

LS0tDQp0aXRsZTogIk0zdG90YWwxIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQoNCmBgYHtyfQ0KIyBWaWV3IHRoZSBNM3RvdGFsIGRhdGENCk0zdG90YWwNCmBgYA0KDQoNCg0KYGBge3IsIGZpZy5oZWlnaHQ9IDgsIGZpZy53aWR0aD0xMn0NCiMgcGNiYXJzIGZvciBNM3RvdGFsIGRhdGENCiMgaW5wdXQ6IEEgZGF0YSBmcmFtZSBjb250YWluaW5nIGNvbHVtbnMgY2F0ZWdvcnksIGNhc2UsIHRvdGFsDQojIGZvciBmb3JlY2FzdHMgd2l0aGluIDk1ICUNCiMgY29uZi4gaW50ZXJ2YWwgb2YgZXN0aW1hdGVQZXJjZW50YWdlRXJyb3JzIGJ5IGRlZmF1bHQ6IDk1JQ0KDQpjYXRlZ29yeSA8LSBwYXN0ZSgiQVJJTUFfd2l0aF9ob3Jpem9uID0iLCB1bmlxdWUoTTN0b3RhbCRob3Jpem9uKSkNCmNhc2VzIDwtIE0zdG90YWwkZm9yZWNhc3RzX3dpdGhpbl85NQ0KdG90YWwgPC0gTTN0b3RhbCR0b3RhbF9mb3JlY2FzdA0KZGYxIDwtIGRhdGEuZnJhbWUoY2F0ZWdvcnksIGNhc2VzLCB0b3RhbCkNCmVzdGltYXRlUGVyY2VudGFnZUVycm9ycyhkZjEpDQpgYGANCg0KDQoNCmBgYHtyLCBmaWcuaGVpZ2h0PSA4LCBmaWcud2lkdGg9MTJ9DQojIHBjYmFycyBmb3IgTTN0b3RhbCBkYXRhDQojIGlucHV0OiBBIGRhdGEgZnJhbWUgY29udGFpbmluZyBjb2x1bW5zIGNhdGVnb3J5LCBjYXNlLCB0b3RhbA0KIyBmb3IgZm9yZWNhc3RzIHdpdGhpbiA4MCAlDQojIGNvbmYuIGludGVydmFsIG9mIGVzdGltYXRlUGVyY2VudGFnZUVycm9ycyAgYnkgZGVmYXVsdDogOTUlDQoNCmNhdGVnb3J5IDwtIHBhc3RlKCJBUklNQV93aXRoX2hvcml6b24gPSIsIHVuaXF1ZShNM3RvdGFsJGhvcml6b24pKQ0KY2FzZXMgPC0gTTN0b3RhbCRmb3JlY2FzdHNfd2l0aGluXzgwDQp0b3RhbCA8LSBNM3RvdGFsJHRvdGFsX2ZvcmVjYXN0DQpkZjIgPC0gZGF0YS5mcmFtZShjYXRlZ29yeSwgY2FzZXMsIHRvdGFsKQ0KZXN0aW1hdGVQZXJjZW50YWdlRXJyb3JzKGRmMikNCmBgYA0KDQpgYGB7ciwgZmlnLmhlaWdodD0gOCwgZmlnLndpZHRoPTEyfQ0KDQpjYXRlZ29yeSA8LSBjKCJmb3JlY2FzdCB3aXRoaW4gODAlIiwgImZvcmVjYXN0IHdpdGhpbiA5NSUiKQ0KY2FzZXMgPC0gYyhzdW0oTTN0b3RhbCRmb3JlY2FzdHNfd2l0aGluXzgwKSwgc3VtKE0zdG90YWwkZm9yZWNhc3RzX3dpdGhpbl85NSkpDQp0b3RhbCA8LSBzdW0oTTN0b3RhbCR0b3RhbF9mb3JlY2FzdCkNCmRmMyA8LSBkYXRhLmZyYW1lKGNhdGVnb3J5LCBjYXNlcywgdG90YWwpDQplc3RpbWF0ZVBlcmNlbnRhZ2VFcnJvcnMoZGYzLCBjb25mLmxldmVsID0gMC44KQ0KYGBgDQo=