## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 334 1126 1442 1500 1743 5642
hist(Area_data_logged, breaks=45)
hist(samp1,breaks=45)
hist(samp1,breaks=30)
The mean of our sample of 50 is 1391.64
samples.area <- data.frame(samp2=double(),
samp3=double(),
samp4=double(),
stringsAsFactors=FALSE)
for(i in 1:1){samples.area[i,1] <-mean(sample(area, 50))}
for(i in 1:1){samples.area[i,2] <-mean(sample(area, 100))}
for(i in 1:1){samples.area[i,3] <-mean(sample(area, 1000))}
mean(samples.area[,1])
## [1] 1588.42
mean(samples.area[,2])
## [1] 1454.01
mean(samples.area[,3])
## [1] 1481.385
price_sample_1<-sample(price, 50)
mean(price)
## [1] 180796.1
mean(price_sample_1)
## [1] 181771.8
sample_means50 <- data.frame(sample.of.area=double(),
stringsAsFactors=FALSE)
for(i in 1:5000){sample_means50[i,1] <-mean(sample(area, 50))}
mean(sample_means50[,1])
## [1] 1500.675
sample_means_small <- rep(0, 100)
for(i in 1:100){
samp <- sample(area, 50)
sample_means_small[i] <- mean(samp)
}
sample_means_small
## [1] 1463.74 1563.74 1476.20 1444.88 1379.22 1478.54 1565.34 1454.30
## [9] 1506.14 1474.42 1673.80 1531.26 1442.32 1612.38 1495.30 1488.04
## [17] 1445.74 1458.46 1506.52 1571.18 1537.08 1369.96 1456.80 1570.04
## [25] 1491.86 1627.84 1512.10 1426.10 1370.20 1532.70 1516.52 1441.26
## [33] 1478.90 1430.26 1604.92 1375.16 1492.16 1502.74 1542.94 1462.54
## [41] 1476.40 1532.60 1430.16 1564.82 1630.74 1488.12 1562.70 1475.98
## [49] 1500.74 1464.56 1549.50 1370.62 1532.14 1429.46 1563.70 1511.58
## [57] 1412.24 1569.58 1567.16 1517.24 1563.78 1445.22 1552.22 1578.42
## [65] 1687.68 1543.10 1532.48 1569.12 1439.02 1474.78 1450.58 1538.36
## [73] 1509.38 1653.44 1526.22 1359.16 1545.66 1586.44 1466.82 1517.52
## [81] 1462.06 1399.26 1552.04 1475.02 1542.28 1509.28 1373.86 1442.90
## [89] 1473.28 1509.56 1480.06 1523.04 1551.18 1539.54 1546.40 1503.92
## [97] 1527.24 1544.48 1551.38 1571.86
hist(sample_means_small)
sample_means50_price <- data.frame(sample.of.price=double(),
stringsAsFactors=FALSE)
for(i in 1:5000){sample_means50_price[i,1] <-mean(sample(price, 50))}
mean(sample_means50_price[,1])
## [1] 180983.3
plot.a<-ggplot(data = sample_means50_price,aes(x=sample_means50_price[,1]))+geom_histogram(aes(x=sample_means50_price[,1],y=..density..),fill='#2354ff',binwidth=55)+stat_function(fun = dnorm, color='#eaff84',size=1.1,args = list(mean = mean(sample_means50_price[,1]), sd = sd(sample_means50_price[,1])))+ylim(0,.00014)+ theme(panel.background = element_rect(fill = '#34363d'))+ggtitle('5000 Size 50 Samples-price')+xlab('price')
plot.a
## [1] "Variance of price, size=50"
## sample.of.price
## sample.of.price 127060780
## [1] "Variance of price, size=150"
## sample.of.price
## sample.of.price 41757176