ANS: \(Y\) is the minimum value of \(Xi\)
Each \(Xi\) has \(k\) possibilities. The total possible number of assignments for the entrie series of random variables \(X1, X2 .. Xn\). If \(Y = 1\) then \(k^n - (k -1)^n\)
Since a “uniform distribution” is a distribution that has constant probability, then one value has an equal probability of being selected. Given that there are a total of \(Xn’s\), the probability of each X would be \(1/n\).
So, the distribution for \(Y\) is:
\(P(k) = 1/(k-1)\) if $1 x k $
x <- 10 #years
p <- 1/x #the machine will fail
q <- 1- p #the machine will not fail
geo <- pgeom(8, p, lower.tail = FALSE)
geo
## [1] 0.3874205
stdev <- round(sqrt((1-p)/(p^2)),2)
stdev
## [1] 9.49
x <- 8 #years
p <- 1/10
q <- 1 - p
ev <- (pexp(x, p, lower.tail = F))
ev
## [1] 0.449329
ans2 <- 1 - ev
ans2
## [1] 0.550671
ans3 <- 1/(p)
ans3
## [1] 10
x <- 8 #trails
p <- 1/10
q <- 1 - p
pbio <- pbinom(0, x, p)
pbio
## [1] 0.4304672
ans2 <- 1 - pbio
ans2
## [1] 0.5695328
ans3 <- round(x * p)
ans3
## [1] 1
stdev <- sqrt(ans3 * q)
stdev
## [1] 0.9486833
x <- 8 #years
p <- 1/10
q <- 1 - p
lambda <- x * p
pois <- ppois(0, lambda)
pois
## [1] 0.449329
ans2 <- 1 - pois
ans2
## [1] 0.550671
stdev <- sqrt(10)
stdev
## [1] 3.162278