** DATA_605_Assignment_7_Thonn - Important Distributions **
# install libraries if needed
#install.packages("permutations")
#library(permutations)
#install.packages('gtools')
#library(gtools)
** Problem-1 **
Answer-1:
P(Y=1)+P(Y=2)+???+P(Y=k)=1
a). assign 1 to k to X1, X2, . . . , Xn = kn
P(Y=1)=kn - (k - 1)nkn
b). assign 2 to k to X1, X2, . . . , Xn = kn
P(Y=2)=kn -(k - 2)n - [kn - (k-1)n]kn
=(k-1)n - (k-2)nkn
c). assign 3 to k to X1, X2, . . . , Xn = kn
P(Y=3)=kn-(k-3)n - [(k-1)n - (k-2)n] - [kn - (k-1)n]kn =(k-2)n - (k-3)nkn
d). assign j to k to X1, X2, . . . , Xn is (k - j)n
then-Answer-1:
P(Y=j)=(k-j+1)n - (k-j)nkn
these are the ways to assign X1,X2……Xn so that the minimum value is j.
** Problem-2 **
# Problem - 2a:
#probability that machine will fail before 8 years
p_bef_8 <- pgeom(7,1/10)
#probability that machine will fail after 8 years
p_aft_8 <- round(1-p_bef_8,3)
p_aft_8
## [1] 0.43
# [1] 0.43
# expect 1 failure every 10 years
p <- 0.1
EV <- (1 - p)/p
EV
## [1] 9
# [1] 9
sd <- sqrt((1 - p)/p^2)
sd
## [1] 9.486833
# [1] 9.486833
# Problem - 2b:
x <- 8
lam <- .1
#probability that machine will fail after 8 years
p_exp_aft_8 <- round(pexp(8,.1,lower.tail = F),4)
p_exp_aft_8
## [1] 0.4493
# expect 1 failure every 10 years
x <- 8
lam <- .1
EV <- 1/lam
EV
## [1] 10
# [1] 10
sd <- sqrt(1/lam^2)
sd
## [1] 10
# [1] 10
pr <- 0.1
n <- 8
x <- 0
dbinom(0, 8, .1)
## [1] 0.4304672
# [1] 0.4304672
EV <- n * pr
EV
## [1] 0.8
# [1] 0.8
sd <- sqrt(n * pr * (1 - pr))
sd
## [1] 0.8485281
# [1] 0.8485281
pr <- 0.1
t <- 8
x <- 0
lam <- t * pr
lam
## [1] 0.8
# [1] 0.8
dpois(x,lam)
## [1] 0.449329
# [1] 0.449329
EV <- lam
EV
## [1] 0.8
# [1] 0.8
sd <- round(sqrt(lam),4)
sd
## [1] 0.8944
# [1] 0.8944
** END **