\({ \quad { X }_{ i\quad }\in \quad N(1,k) }\)
\({ Y\quad =\{ \quad { Y }|\quad min({ X }_{ i\quad }),\quad i\quad =\quad 1.....n\quad \} }\)
\(f({ x }_{ i })=\frac { 1 }{ k } ,\quad 1\le \quad { x }_{ i }\quad \le \quad k\)
\(f({ x }_{ i })=0,\quad otherwise\)
\(P[min({ y }_{ i\quad })=1]\quad \\ =\quad 1\quad -{ p[{ x }_{ i\quad }>\quad 1] }\quad \\ =\quad 1\quad -\prod _{ i=1 }^{ i=n } \int _{ 1 }^{ k }{ f({ x }_{ i }) } d{ x }_{ i }\\ =1-{ \left( \frac { k-1 }{ k } \right) }^{ n }\)
=>\(P[min({ y }_{ i\quad })=2]\quad \\ =\quad 1\quad -\quad \prod _{ i=1 }^{ i=n }{ p[{ x }_{ i\quad }>\quad 2] } \quad -\quad P[min({ y }_{ i\quad })=1]\quad \\ =\quad 1\quad -\prod _{ i=1 }^{ i=n } \int _{ 2 }^{ k }{ \quad f({ x }_{ i })\quad d{ x }_{ i } } -\quad (1-{ \left( \frac { k-1 }{ k } \right) }^{ n })\\ ={ \left( \frac { k-1 }{ k } \right) }^{ n }\quad -\quad { \left( \frac { k-2 }{ k } \right) }^{ n }\)
=> \(P[min({ y }_{ i\quad })=3]\quad \\ =\quad 1\quad -\quad \prod _{ i=1 }^{ i=n }{ p[{ x }_{ i\quad }>\quad 3] } \quad -\quad P[min({ y }_{ i\quad })=1]\quad -\quad P[min({ y }_{ i\quad })=2]\\ =\quad 1\quad -\prod _{ i=1 }^{ i=n } \int _{ 3 }^{ k }{ \quad f({ x }_{ i })\quad d{ x }_{ i } } -\quad (1-{ \left( \frac { k-1 }{ k } \right) }^{ n })\quad -\quad \left( { \left( \frac { k-1 }{ k } \right) }^{ n }\quad -\quad { \left( \frac { k-2 }{ k } \right) }^{ n } \right) \\ ={ \left( \frac { k-2 }{ k } \right) }^{ n }\quad -\quad { \left( \frac { k-3 }{ k } \right) }^{ n }\)
=> Steps: \(\dots\)
P[min(yi=1)] > P[min(yi=2)] > P[min(yi=3)] > … > P[min(yi=k)]
k=10,n=10
#generate 10 samples x, each x from sample function: sample(1:10,10,replace = T), randomly pick a integer from N(1,10)
#set y euqal to the min(x1...x10)
#replicate 1000 time
#plot 1000 results of y
Y<- replicate(1000, {
y <- min(sample(1:10,10,replace = T))
})
hist(Y)
K=100, n=10
#generate 10 samples X, each x from sample function: sample(1:100,10,replace = T), using sample function randomly pick a integer from N(1,100)
#set y euqal to the min(x1...x10)
#replicate 1000 time
#plot 1000 results of y
Y<- replicate(1000, {
y <- min(sample(1:100,10,replace = T))
})
hist(Y)
K=10, n=100
The result becomes 100% getting 1, since generate 100 numbers from rang (1,10), and in 100 samples Xi has vary less chance not paicking 1, so that Probability of min yi is approximatly to 1.
#generate 100 samples X, each x from sample function: sample(1:10,100,replace = T), using sample function randomly pick a integer from N(1,10)
#set y euqal to the min(x1...x10)
#replicate 1000 time
#plot 1000 results of y
Y<- replicate(1000, {
y <- min(sample(1:10,100,replace = T))
})
hist(Y)
Geomeric distribution:
\(mean = \frac{1-p}{p}\)
=>\(10 = \frac{1-p}{p}\)
=> \(p= \frac{1}{11}\)
\(variance = \frac{1-p}{p^2}\)
=> \(SD= \sqrt{\frac{1-p}{p^2}}\)
=> \(SD = 1/11\)
pgeom(8,1/11)
## [1] 0.5759024
Exponential distribution:
\(mean = \frac{1}{\lambda}\)
=>\(10 = \frac{1}{\lambda}\)
=> \(\lambda = \frac{1}{10}\)
\(variance = \frac{1}{\lambda^2}\)
=> \(SD= \sqrt{\frac{1}{\lambda^2}}\)
=> \(SD = 1/10\)
pexp(8,1/10)
## [1] 0.550671
bionomial distribution: Assume p=q=0.5
\(mean = np\)
\(10 = n(0.5)\)
=> \(n=20\)
\(variance = np(1-p)\)
=> \(SD = \sqrt{10(1-0.5)}\)
=> \(SD = \sqrt{5}\)
pbinom(8,20,0.5)
## [1] 0.2517223
poisson distribution:
\(mean = \lambda\)
=>\(10=\lambda\)
\(variance = \lambda = 10\)
=> \(SD = \sqrt{10}\)
ppois(8,10)
## [1] 0.3328197