Student Details
- Chaitali Chaudhari (s3687120)
Data Table
The data table is taken from Wikipedia for Winter Olympics and contains the aggregated data for all the years Winter Olympics was held. The Medal count is derived from each year link of the data table as the count for each year and country were not available in one summarised table.
A .csv file was created based on the data from the table and contains below columns;
Year
Country
Medals Won(Each Year)
Duration
The link for data table;
https://en.wikipedia.org/wiki/Winter_Olympic_Games
Code
Trend <- read_csv("/Users/hemantgawande/Chaitali/Data Visualisation/Winter Olympic Medals Trend.csv")
Trend$Country <- factor(Trend$Country, levels = c("Norway", "United States", "Germany", "Austria", "Canada", "Soviet Nation"))
# Color Palette with Color Blind Friendly Colors from http://jfly.iam.u-tokyo.ac.jp/color/
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#0072B2", "#D55E00", "#CC79A7", "#F0E442")
df<-data.frame(Country = c("Norway", "United States", "Germany", "Austria", "Canada", "Soviet Nation"), Medals = c(368,305,408,232,199,384))
ggplot(Trend, aes(x = Year, y = Medals, colour = Country)) + labs(title = "Top Most 6 Countries in Winter Olympics (1924-2018)", subtitle = "Total Medals Won by these countries (1924-2018) are 1857 from 3217", x = "Years", y = "Medals Won (each Olympic Year)", caption = "Source: Wikipedia\nNotes: East Germany and West Germany are combined in Germany\nRussia, Belarus and Latvia are combined in Soviet Union\nIn year 1940 and 1944, no Winter Olympics were played due to World War II") + geom_line(size = 1) + facet_wrap(~ Country, scales = "free") + theme_bw() + theme(legend.position = "none", panel.border = element_blank(), strip.background = element_blank(), plot.title = element_text(face = "bold", size = 14), axis.title = element_text(face = "bold")) + scale_colour_manual(values=cbPalette) + geom_text(x = 1970, y = 40, aes(label = paste0("", Medals)), data = df) + scale_y_continuous(limits = c(0, 45))
Visualisation

Caption
The data visualisation shows the trend of most successful top six countries in the Winter Olympics.
The Winter Olympics were not held in the year 1940 and 1944 due to World War II is where a medal count of zero can be seen for all the countries.
The Soviet Nation started to play in the year 1956 till 1988 and due to dissolution of the Soviet Union, in 1992 Unified team representing all the countries participated and later on from 1994 Russia, Latvia and Belarus have participated as separate teams (These are added to the Soviet Union medal count).
The Germany participated as two different nations East Germany and West Germany from 1968 to 1988 due to partitions of the country.
LS0tCnRpdGxlOiAiTUFUSDIyNzAgQXNzaWdubWVudCAxIgpzdWJ0aXRsZTogVHVybmluZyBUYWJsZXMKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0Ci0tLQoKIyMjIFN0dWRlbnQgRGV0YWlscwoKKiBDaGFpdGFsaSBDaGF1ZGhhcmkgKHMzNjg3MTIwKQoKYGBge3IsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoZHBseXIpCmxpYnJhcnkobWFncml0dHIpCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShyZWFkcikKbGlicmFyeShndGFibGUpCmBgYAoKIyMjIERhdGEgVGFibGUKClRoZSBkYXRhIHRhYmxlIGlzIHRha2VuIGZyb20gV2lraXBlZGlhIGZvciBXaW50ZXIgT2x5bXBpY3MgYW5kIGNvbnRhaW5zIHRoZSBhZ2dyZWdhdGVkIGRhdGEgZm9yIGFsbCB0aGUgeWVhcnMgV2ludGVyIE9seW1waWNzIHdhcyBoZWxkLiBUaGUgTWVkYWwgY291bnQgaXMgZGVyaXZlZCBmcm9tIGVhY2ggeWVhciBsaW5rIG9mIHRoZSBkYXRhIHRhYmxlIGFzIHRoZSBjb3VudCBmb3IgZWFjaCB5ZWFyIGFuZCBjb3VudHJ5IHdlcmUgbm90IGF2YWlsYWJsZSBpbiBvbmUgc3VtbWFyaXNlZCB0YWJsZS4KCkEgLmNzdiBmaWxlIHdhcyBjcmVhdGVkIGJhc2VkIG9uIHRoZSBkYXRhIGZyb20gdGhlIHRhYmxlIGFuZCBjb250YWlucyBiZWxvdyBjb2x1bW5zOyA8YnIvPgpZZWFyIDxici8+CkNvdW50cnkgPGJyLz4KTWVkYWxzIFdvbihFYWNoIFllYXIpIDxici8+CkR1cmF0aW9uCgpUaGUgbGluayBmb3IgZGF0YSB0YWJsZTsgPGJyLz4gCmh0dHBzOi8vZW4ud2lraXBlZGlhLm9yZy93aWtpL1dpbnRlcl9PbHltcGljX0dhbWVzCgojIyMgQ29kZQoKYGBge3J9ClRyZW5kIDwtIHJlYWRfY3N2KCIvVXNlcnMvaGVtYW50Z2F3YW5kZS9DaGFpdGFsaS9EYXRhIFZpc3VhbGlzYXRpb24vV2ludGVyIE9seW1waWMgTWVkYWxzIFRyZW5kLmNzdiIpCgpUcmVuZCRDb3VudHJ5IDwtIGZhY3RvcihUcmVuZCRDb3VudHJ5LCBsZXZlbHMgPSBjKCJOb3J3YXkiLCAiVW5pdGVkIFN0YXRlcyIsICJHZXJtYW55IiwgIkF1c3RyaWEiLCAiQ2FuYWRhIiwgIlNvdmlldCBOYXRpb24iKSkKCiMgQ29sb3IgUGFsZXR0ZSB3aXRoIENvbG9yIEJsaW5kIEZyaWVuZGx5IENvbG9ycyBmcm9tIGh0dHA6Ly9qZmx5LmlhbS51LXRva3lvLmFjLmpwL2NvbG9yLwpjYlBhbGV0dGUgPC0gYygiIzk5OTk5OSIsICIjRTY5RjAwIiwgIiM1NkI0RTkiLCAiIzAwOUU3MyIsICIjMDA3MkIyIiwgIiNENTVFMDAiLCAiI0NDNzlBNyIsICIjRjBFNDQyIikKCmRmPC1kYXRhLmZyYW1lKENvdW50cnkgPSBjKCJOb3J3YXkiLCAiVW5pdGVkIFN0YXRlcyIsICJHZXJtYW55IiwgIkF1c3RyaWEiLCAiQ2FuYWRhIiwgIlNvdmlldCBOYXRpb24iKSwgTWVkYWxzID0gYygzNjgsMzA1LDQwOCwyMzIsMTk5LDM4NCkpCmdncGxvdChUcmVuZCwgYWVzKHggPSBZZWFyLCB5ID0gTWVkYWxzLCBjb2xvdXIgPSBDb3VudHJ5KSkgKyBsYWJzKHRpdGxlID0gIlRvcCBNb3N0IDYgQ291bnRyaWVzIGluIFdpbnRlciBPbHltcGljcyAoMTkyNC0yMDE4KSIsIHN1YnRpdGxlID0gIlRvdGFsIE1lZGFscyBXb24gYnkgdGhlc2UgY291bnRyaWVzICgxOTI0LTIwMTgpIGFyZSAxODU3IGZyb20gMzIxNyIsIHggPSAiWWVhcnMiLCB5ID0gIk1lZGFscyBXb24gKGVhY2ggT2x5bXBpYyBZZWFyKSIsIGNhcHRpb24gPSAiU291cmNlOiBXaWtpcGVkaWFcbk5vdGVzOiBFYXN0IEdlcm1hbnkgYW5kIFdlc3QgR2VybWFueSBhcmUgY29tYmluZWQgaW4gR2VybWFueVxuUnVzc2lhLCBCZWxhcnVzIGFuZCBMYXR2aWEgYXJlIGNvbWJpbmVkIGluIFNvdmlldCBVbmlvblxuSW4geWVhciAxOTQwIGFuZCAxOTQ0LCBubyBXaW50ZXIgT2x5bXBpY3Mgd2VyZSBwbGF5ZWQgZHVlIHRvIFdvcmxkIFdhciBJSSIpICsgZ2VvbV9saW5lKHNpemUgPSAxKSArIGZhY2V0X3dyYXAofiBDb3VudHJ5LCBzY2FsZXMgPSAiZnJlZSIpICsgdGhlbWVfYncoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIiwgcGFuZWwuYm9yZGVyID0gZWxlbWVudF9ibGFuaygpLCBzdHJpcC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpLCBwbG90LnRpdGxlID0gZWxlbWVudF90ZXh0KGZhY2UgPSAiYm9sZCIsIHNpemUgPSAxNCksIGF4aXMudGl0bGUgPSBlbGVtZW50X3RleHQoZmFjZSA9ICJib2xkIikpICsgc2NhbGVfY29sb3VyX21hbnVhbCh2YWx1ZXM9Y2JQYWxldHRlKSArIGdlb21fdGV4dCh4ID0gMTk3MCwgeSA9IDQwLCBhZXMobGFiZWwgPSBwYXN0ZTAoIiIsIE1lZGFscykpLCBkYXRhID0gZGYpICsgc2NhbGVfeV9jb250aW51b3VzKGxpbWl0cyA9IGMoMCwgNDUpKQoKYGBgCgojIyMgVmlzdWFsaXNhdGlvbgpgYGB7ciwgZWNobyA9IEZBTFNFfQpnZ3Bsb3QoVHJlbmQsIGFlcyh4ID0gWWVhciwgeSA9IE1lZGFscywgY29sb3VyID0gQ291bnRyeSkpICsgbGFicyh0aXRsZSA9ICJUb3AgTW9zdCA2IENvdW50cmllcyBUcmVuZCBpbiBXaW50ZXIgT2x5bXBpY3MgKDE5MjQtMjAxOCkiLCBzdWJ0aXRsZSA9ICJUb3RhbCBNZWRhbHMgV29uIGJ5IHRoZXNlIGNvdW50cmllcyAoMTkyNC0yMDE4KSBhcmUgMTg1NyBmcm9tIDMyMTciLCB4ID0gIlllYXJzIiwgeSA9ICJNZWRhbHMgV29uIiwgY2FwdGlvbiA9ICJTb3VyY2U6IFdpa2lwZWRpYVxuTm90ZXM6IEVhc3QgR2VybWFueSBhbmQgV2VzdCBHZXJtYW55IGFyZSBjb21iaW5lZCBpbiBHZXJtYW55XG5SdXNzaWEsIEJlbGFydXMgYW5kIExhdHZpYSBhcmUgY29tYmluZWQgaW4gU292aWV0IFVuaW9uXG5JbiB5ZWFyIDE5NDAgYW5kIDE5NDQsIG5vIFdpbnRlciBPbHltcGljcyB3ZXJlIHBsYXllZCBkdWUgdG8gV29ybGQgV2FyIElJIikgKyBnZW9tX2xpbmUoc2l6ZSA9IDEpICsgZmFjZXRfd3JhcCh+IENvdW50cnksIHNjYWxlcyA9ICJmcmVlIikgKyB0aGVtZV9idygpICsgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiLCBwYW5lbC5ib3JkZXIgPSBlbGVtZW50X2JsYW5rKCksIHN0cmlwLmJhY2tncm91bmQgPSBlbGVtZW50X2JsYW5rKCksIHBsb3QudGl0bGUgPSBlbGVtZW50X3RleHQoZmFjZSA9ICJib2xkIiwgc2l6ZSA9IDE0KSwgYXhpcy50aXRsZSA9IGVsZW1lbnRfdGV4dChmYWNlID0gImJvbGQiKSkgKyBzY2FsZV9jb2xvdXJfbWFudWFsKHZhbHVlcz1jYlBhbGV0dGUpICsgZ2VvbV90ZXh0KHggPSAxOTcwLCB5ID0gNDAsIGFlcyhsYWJlbCA9IHBhc3RlMCgiIiwgTWVkYWxzKSksIGRhdGEgPSBkZikgKyBzY2FsZV95X2NvbnRpbnVvdXMobGltaXRzID0gYygwLCA0NSkpCgpgYGAKCgojIyMgQ2FwdGlvbgoKVGhlIGRhdGEgdmlzdWFsaXNhdGlvbiBzaG93cyB0aGUgdHJlbmQgb2YgbW9zdCBzdWNjZXNzZnVsIHRvcCBzaXggY291bnRyaWVzIGluIHRoZSBXaW50ZXIgT2x5bXBpY3MuCgpUaGUgV2ludGVyIE9seW1waWNzIHdlcmUgbm90IGhlbGQgaW4gdGhlIHllYXIgMTk0MCBhbmQgMTk0NCBkdWUgdG8gV29ybGQgV2FyIElJIGlzIHdoZXJlIGEgbWVkYWwgY291bnQgb2YgemVybyBjYW4gYmUgc2VlbiBmb3IgYWxsIHRoZSBjb3VudHJpZXMuIAoKVGhlIFNvdmlldCBOYXRpb24gc3RhcnRlZCB0byBwbGF5IGluIHRoZSB5ZWFyIDE5NTYgdGlsbCAxOTg4IGFuZCBkdWUgdG8gZGlzc29sdXRpb24gb2YgdGhlIFNvdmlldCBVbmlvbiwgaW4gMTk5MiBVbmlmaWVkIHRlYW0gcmVwcmVzZW50aW5nIGFsbCB0aGUgY291bnRyaWVzIHBhcnRpY2lwYXRlZCBhbmQgbGF0ZXIgb24gZnJvbSAxOTk0IFJ1c3NpYSwgTGF0dmlhIGFuZCBCZWxhcnVzIGhhdmUgcGFydGljaXBhdGVkIGFzIHNlcGFyYXRlIHRlYW1zIChUaGVzZSBhcmUgYWRkZWQgdG8gdGhlIFNvdmlldCBVbmlvbiBtZWRhbCBjb3VudCkuCgpUaGUgR2VybWFueSBwYXJ0aWNpcGF0ZWQgYXMgdHdvIGRpZmZlcmVudCBuYXRpb25zIEVhc3QgR2VybWFueSBhbmQgV2VzdCBHZXJtYW55IGZyb20gMTk2OCB0byAxOTg4IGR1ZSB0byBwYXJ0aXRpb25zIG9mIHRoZSBjb3VudHJ5LgoKCg==