IQ and Behavior Problem
設定路徑以及讀取資料
setwd("/Users/tayloryen/Desktop/大學/成大課業/大四下/資料管理/0312/HW/hw06")
dta <- read.table("IQ_Beh.txt", header = T, row.names = 1)
查看資料架構
str(dta)
## 'data.frame': 94 obs. of 3 variables:
## $ Dep: Factor w/ 2 levels "D","N": 2 2 2 2 1 2 2 2 2 2 ...
## $ IQ : int 103 124 124 104 96 92 124 99 92 116 ...
## $ BP : int 4 12 9 3 3 3 6 4 3 9 ...
查看前六筆資料
head(dta)
## Dep IQ BP
## 1 N 103 4
## 2 N 124 12
## 3 N 124 9
## 4 N 104 3
## 5 D 96 3
## 6 N 92 3
查看資料格式
class(dta)
## [1] "data.frame"
查看資料維度
dim(dta)
## [1] 94 3
查看變項名稱
names(dta)
## [1] "Dep" "IQ" "BP"
查看變項“BP”是否為向量格式
is.vector(dta$BP)
## [1] TRUE
選取資料第一列
dta[1, ]
## Dep IQ BP
## 1 N 103 4
選資料中IQ變相的第一到第三項
dta[1:3, "IQ"]
## [1] 103 124 124
查看BP最少的四筆
tail(dta[order(dta$BP), ])
## Dep IQ BP
## 16 N 89 11
## 58 N 117 11
## 66 N 126 11
## 2 N 124 12
## 73 D 99 13
## 12 D 22 17
畫直方圖
with(dta, hist(IQ, xlab = "IQ", main = ""))

畫箱形圖
boxplot(BP ~ Dep, data = dta,
xlab = "Depression",
ylab = "Behavior problem score")

畫散點圖
plot(IQ ~ BP, data = dta, pch = 20, col = dta$Dep,
xlab = "Behavior problem score", ylab = "IQ")
grid()

畫兩條回歸線
plot(BP ~ IQ, data = dta, type = "n",
ylab = "Behavior problem score", xlab = "IQ")
text(dta$IQ, dta$BP, labels = dta$Dep, cex = 0.5)
abline(lm(BP ~ IQ, data = dta, subset = Dep == "D"))
abline(lm(BP ~ IQ, data = dta, subset = Dep == "N"), lty = 2)

Did the two groups of children have different IQ and/or behavioral problems?
兩組小孩在IQ表現上有顯著差異,但在BP上面沒有顯著差異
options(digits = 4, show.signif.stars = F)
summary(aov(IQ~Dep,data=dta))
## Df Sum Sq Mean Sq F value Pr(>F)
## Dep 1 1731 1731 6.07 0.016
## Residuals 92 26238 285
options(digits = 4, show.signif.stars = F)
summary(aov(BP~Dep,data=dta))
## Df Sum Sq Mean Sq F value Pr(>F)
## Dep 1 33 32.6 3.28 0.074
## Residuals 92 915 9.9
Was there any evidence of a relationship between IQ and behavioral problems?
從迴歸係數了解到「IQ每增加一個單位,BP減少0.06792單位」
summary(lm(BP ~ IQ, data = dta))
##
## Call:
## lm(formula = BP ~ IQ, data = dta)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.983 -2.356 -0.411 2.121 7.240
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.1828 2.0018 6.59 2.8e-09
## IQ -0.0679 0.0178 -3.81 0.00025
##
## Residual standard error: 2.98 on 92 degrees of freedom
## Multiple R-squared: 0.136, Adjusted R-squared: 0.127
## F-statistic: 14.5 on 1 and 92 DF, p-value: 0.000252