Recover this article http://www.win-vector.com/blog/2016/12/magrittrs-doppelganger/.

Another discussion on https://stackoverflow.com/questions/35933272/why-is-using-dplyr-pipe-slower-than-an-equivalent-non-pipe-expression/35935105

library(microbenchmark)
library(tidyverse)
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ----------------------------------------------
## filter(): dplyr, stats
## lag():    dplyr, stats
library(wrapr)

set.seed(234634)

fbase <- function(d) {
  d=(sqrt(tan((cos(sin(d))))))
  return(d)
}

fmagrittr <- function(d) {
  d<-(d %>% sin() %>% cos() %>% tan() %>% sqrt())
  return(d)
}

fmagrittrdot <- function(d) {
  d<-(d %>% sin(.) %>% cos(.) %>% tan(.) %>% sqrt(.))
  return(d)
}

fsemicolon <- function(d) {
  d ->.; sin(.) ->.; cos(.) ->.; tan(.) ->.; sqrt(.)->d;
  return(d)
}
fwrapr <- function(d) {
 d <-d%.>%sin(.)%.>%cos(.)%.>%tan(.)%.>%sqrt(.)
  return(d)
}

input<-seq(1:30)

bm <- microbenchmark(
  fbase(input),
  fmagrittr(input),
  fmagrittrdot(input),
  fsemicolon(input),
  fwrapr(input),
  control=list(warmup=100L,
               order='random'),
  times=10000L
)
print(bm)
## Unit: microseconds
##                 expr     min      lq       mean  median      uq      max
##         fbase(input)   3.072   3.414   4.714244   3.755   4.096 2803.713
##     fmagrittr(input) 119.126 136.534 167.884004 143.019 169.302 4038.316
##  fmagrittrdot(input) 109.910 125.611 157.384073 131.755 157.697 3674.113
##    fsemicolon(input)   3.072   3.755   5.100713   4.096   4.438 3071.659
##        fwrapr(input)  17.750  20.822  27.359023  22.187  24.918 3664.214
##  neval  cld
##  10000 a   
##  10000    d
##  10000   c 
##  10000 a   
##  10000  b
autoplot(bm)

print(sessionInfo())
## R version 3.4.2 (2017-09-28)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 16299)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United States.1252 
## [2] LC_CTYPE=English_United States.1252   
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] wrapr_1.0.0            dplyr_0.7.4            purrr_0.2.3           
##  [4] readr_1.1.1            tidyr_0.7.1            tibble_1.3.4          
##  [7] ggplot2_2.2.1          tidyverse_1.1.1        microbenchmark_1.4-2.1
## [10] RevoUtils_10.0.6       RevoUtilsMath_10.0.1  
## 
## loaded via a namespace (and not attached):
##  [1] zoo_1.8-0        reshape2_1.4.2   splines_3.4.2    haven_1.1.0     
##  [5] lattice_0.20-35  colorspace_1.3-2 htmltools_0.3.6  yaml_2.1.14     
##  [9] survival_2.41-3  rlang_0.2.0.9000 foreign_0.8-69   glue_1.1.1      
## [13] modelr_0.1.1     readxl_1.0.0     bindrcpp_0.2     multcomp_1.4-7  
## [17] bindr_0.1        plyr_1.8.4       stringr_1.2.0    munsell_0.4.3   
## [21] gtable_0.2.0     cellranger_1.1.0 rvest_0.3.2      mvtnorm_1.0-6   
## [25] codetools_0.2-15 psych_1.7.8      evaluate_0.10.1  knitr_1.17      
## [29] forcats_0.2.0    parallel_3.4.2   TH.data_1.0-8    broom_0.4.2     
## [33] Rcpp_0.12.13     scales_0.5.0     backports_1.1.1  jsonlite_1.5    
## [37] mnormt_1.5-5     hms_0.3          digest_0.6.12    stringi_1.1.5   
## [41] grid_3.4.2       rprojroot_1.2    tools_3.4.2      sandwich_2.4-0  
## [45] magrittr_1.5     lazyeval_0.2.0   pkgconfig_2.0.1  MASS_7.3-47     
## [49] Matrix_1.2-11    xml2_1.1.1       lubridate_1.6.0  assertthat_0.2.0
## [53] rmarkdown_1.6    httr_1.3.1       R6_2.2.0         nlme_3.1-131    
## [57] compiler_3.4.2