Extract from the current R workspace the source code of the t.test function

getAnywhere(t.test.default)
## A single object matching 't.test.default' was found
## It was found in the following places
##   registered S3 method for t.test from namespace stats
##   namespace:stats
## with value
## 
## function (x, y = NULL, alternative = c("two.sided", "less", "greater"), 
##     mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95, 
##     ...) 
## {
##     alternative <- match.arg(alternative)
##     if (!missing(mu) && (length(mu) != 1 || is.na(mu))) 
##         stop("'mu' must be a single number")
##     if (!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level) || 
##         conf.level < 0 || conf.level > 1)) 
##         stop("'conf.level' must be a single number between 0 and 1")
##     if (!is.null(y)) {
##         dname <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))
##         if (paired) 
##             xok <- yok <- complete.cases(x, y)
##         else {
##             yok <- !is.na(y)
##             xok <- !is.na(x)
##         }
##         y <- y[yok]
##     }
##     else {
##         dname <- deparse(substitute(x))
##         if (paired) 
##             stop("'y' is missing for paired test")
##         xok <- !is.na(x)
##         yok <- NULL
##     }
##     x <- x[xok]
##     if (paired) {
##         x <- x - y
##         y <- NULL
##     }
##     nx <- length(x)
##     mx <- mean(x)
##     vx <- var(x)
##     if (is.null(y)) {
##         if (nx < 2) 
##             stop("not enough 'x' observations")
##         df <- nx - 1
##         stderr <- sqrt(vx/nx)
##         if (stderr < 10 * .Machine$double.eps * abs(mx)) 
##             stop("data are essentially constant")
##         tstat <- (mx - mu)/stderr
##         method <- if (paired) 
##             "Paired t-test"
##         else "One Sample t-test"
##         estimate <- setNames(mx, if (paired) 
##             "mean of the differences"
##         else "mean of x")
##     }
##     else {
##         ny <- length(y)
##         if (nx < 1 || (!var.equal && nx < 2)) 
##             stop("not enough 'x' observations")
##         if (ny < 1 || (!var.equal && ny < 2)) 
##             stop("not enough 'y' observations")
##         if (var.equal && nx + ny < 3) 
##             stop("not enough observations")
##         my <- mean(y)
##         vy <- var(y)
##         method <- paste(if (!var.equal) 
##             "Welch", "Two Sample t-test")
##         estimate <- c(mx, my)
##         names(estimate) <- c("mean of x", "mean of y")
##         if (var.equal) {
##             df <- nx + ny - 2
##             v <- 0
##             if (nx > 1) 
##                 v <- v + (nx - 1) * vx
##             if (ny > 1) 
##                 v <- v + (ny - 1) * vy
##             v <- v/df
##             stderr <- sqrt(v * (1/nx + 1/ny))
##         }
##         else {
##             stderrx <- sqrt(vx/nx)
##             stderry <- sqrt(vy/ny)
##             stderr <- sqrt(stderrx^2 + stderry^2)
##             df <- stderr^4/(stderrx^4/(nx - 1) + stderry^4/(ny - 
##                 1))
##         }
##         if (stderr < 10 * .Machine$double.eps * max(abs(mx), 
##             abs(my))) 
##             stop("data are essentially constant")
##         tstat <- (mx - my - mu)/stderr
##     }
##     if (alternative == "less") {
##         pval <- pt(tstat, df)
##         cint <- c(-Inf, tstat + qt(conf.level, df))
##     }
##     else if (alternative == "greater") {
##         pval <- pt(tstat, df, lower.tail = FALSE)
##         cint <- c(tstat - qt(conf.level, df), Inf)
##     }
##     else {
##         pval <- 2 * pt(-abs(tstat), df)
##         alpha <- 1 - conf.level
##         cint <- qt(1 - alpha/2, df)
##         cint <- tstat + c(-cint, cint)
##     }
##     cint <- mu + cint * stderr
##     names(tstat) <- "t"
##     names(df) <- "df"
##     names(mu) <- if (paired || !is.null(y)) 
##         "difference in means"
##     else "mean"
##     attr(cint, "conf.level") <- conf.level
##     rval <- list(statistic = tstat, parameter = df, p.value = pval, 
##         conf.int = cint, estimate = estimate, null.value = mu, 
##         alternative = alternative, method = method, data.name = dname)
##     class(rval) <- "htest"
##     return(rval)
## }
## <bytecode: 0x7f918e802548>
## <environment: namespace:stats>

參考資料

http://r.789695.n4.nabble.com/Printing-the-function-t-test-in-R-td1746681.html

The End