I used Poisson distribution in order to find probability.
\[\lambda \ = \frac{1}{1000}\] Time interval is 10000
\[p(0,10000/1000) = p(0,10) = \frac{\lambda\ ^0*e^{-10}}{0!} = e^{-10}\]
exp(1)^(-10)
## [1] 4.539993e-05
\[p = \frac{1}{2}\]
\[\lambda \ = \frac{n}{1000}\]
Finding n:
\[\frac{1}{2} = \frac{(\frac{n}{1000})^0*e^{-n/1000}}{0!} = e^{-n/1000}\] \[ e^{-n/1000} = \frac{1}{2}\] \[n = 1000*ln2\]
round(1000*log(2),0)
## [1] 693