## Observations: 2,215
## Variables: 147
## $ Êcommunityname        <fct> BerkeleyHeightstownship, Marpletownship,...
## $ state                 <fct> NJ, PA, OR, NY, MN, MO, MA, IN, ND, TX, ...
## $ countyCode            <fct> 39, 45, ?, 35, 7, ?, 21, ?, 17, ?, ?, ?,...
## $ communityCode         <fct> 5320, 47616, ?, 29443, 5068, ?, 50250, ?...
## $ fold                  <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
## $ population            <int> 11980, 23123, 29344, 16656, 11245, 14049...
## $ householdsize         <dbl> 3.10, 2.82, 2.43, 2.40, 2.76, 2.45, 2.60...
## $ racepctblack          <dbl> 1.37, 0.80, 0.74, 1.70, 0.53, 2.51, 1.60...
## $ racePctWhite          <dbl> 91.78, 95.57, 94.33, 97.35, 89.16, 95.65...
## $ racePctAsian          <dbl> 6.50, 3.44, 3.43, 0.50, 1.17, 0.90, 1.47...
## $ racePctHisp           <dbl> 1.88, 0.85, 2.35, 0.70, 0.52, 0.95, 1.10...
## $ agePct12t21           <dbl> 12.47, 11.01, 11.36, 12.55, 24.46, 18.09...
## $ agePct12t29           <dbl> 21.44, 21.30, 25.88, 25.20, 40.53, 32.89...
## $ agePct16t24           <dbl> 10.93, 10.48, 11.01, 12.19, 28.69, 20.04...
## $ agePct65up            <dbl> 11.33, 17.18, 10.28, 17.57, 12.65, 13.26...
## $ numbUrban             <int> 11980, 23123, 29344, 0, 0, 140494, 28700...
## $ pctUrban              <dbl> 100.00, 100.00, 100.00, 0.00, 0.00, 100....
## $ medIncome             <int> 75122, 47917, 35669, 20580, 17390, 21577...
## $ pctWWage              <dbl> 89.24, 78.99, 82.00, 68.15, 69.33, 75.78...
## $ pctWFarmSelf          <dbl> 1.55, 1.11, 1.15, 0.24, 0.55, 1.00, 0.39...
## $ pctWInvInc            <dbl> 70.20, 64.11, 55.73, 38.95, 42.82, 41.15...
## $ pctWSocSec            <dbl> 23.62, 35.50, 22.25, 39.48, 32.16, 29.31...
## $ pctWPubAsst           <dbl> 1.03, 2.75, 2.94, 11.71, 11.21, 7.12, 5....
## $ pctWRetire            <dbl> 18.39, 22.85, 14.56, 18.33, 14.43, 14.09...
## $ medFamInc             <int> 79584, 55323, 42112, 26501, 24018, 27705...
## $ perCapInc             <int> 29711, 20148, 16946, 10810, 8483, 11878,...
## $ whitePerCap           <int> 30233, 20191, 17103, 10909, 9009, 12029,...
## $ blackPerCap           <int> 13600, 18137, 16644, 9984, 887, 7382, 17...
## $ indianPerCap          <int> 5725, 0, 21606, 4941, 4425, 10264, 21482...
## $ AsianPerCap           <int> 27101, 20074, 15528, 3541, 3352, 10753, ...
## $ OtherPerCap           <fct> 5115, 5250, 5954, 2451, 3000, 7192, 2185...
## $ HispPerCap            <int> 22838, 12222, 8405, 4391, 1328, 8104, 22...
## $ NumUnderPov           <int> 227, 885, 1389, 2831, 2855, 23223, 1126,...
## $ PctPopUnderPov        <dbl> 1.96, 3.98, 4.75, 17.23, 29.99, 17.78, 4...
## $ PctLess9thGrade       <dbl> 5.81, 5.61, 2.80, 11.05, 12.15, 8.76, 4....
## $ PctNotHSGrad          <dbl> 9.90, 13.72, 9.09, 33.68, 23.06, 23.03, ...
## $ PctBSorMore           <dbl> 48.18, 29.89, 30.13, 10.81, 25.28, 20.66...
## $ PctUnemployed         <dbl> 2.70, 2.43, 4.01, 9.86, 9.08, 5.72, 4.85...
## $ PctEmploy             <dbl> 64.55, 61.96, 69.80, 54.74, 52.44, 59.02...
## $ PctEmplManu           <dbl> 14.65, 12.26, 15.95, 31.22, 6.89, 14.31,...
## $ PctEmplProfServ       <dbl> 28.82, 29.28, 21.52, 27.43, 36.54, 26.83...
## $ PctOccupManu          <dbl> 5.49, 6.39, 8.79, 26.76, 10.94, 14.72, 8...
## $ PctOccupMgmtProf      <dbl> 50.73, 37.64, 32.48, 22.71, 27.80, 23.42...
## $ MalePctDivorce        <dbl> 3.67, 4.23, 10.10, 10.98, 7.51, 11.40, 5...
## $ MalePctNevMarr        <dbl> 26.38, 27.99, 25.78, 28.15, 50.66, 33.32...
## $ FemalePctDiv          <dbl> 5.22, 6.45, 14.76, 14.47, 11.64, 14.46, ...
## $ TotalPctDiv           <dbl> 4.47, 5.42, 12.55, 12.91, 9.73, 13.04, 7...
## $ PersPerFam            <dbl> 3.22, 3.11, 2.95, 2.98, 2.98, 2.89, 3.14...
## $ PctFam2Par            <dbl> 91.43, 86.91, 78.54, 64.02, 58.59, 71.94...
## $ PctKids2Par           <dbl> 90.17, 85.33, 78.85, 62.36, 55.20, 69.79...
## $ PctYoungKids2Par      <dbl> 95.78, 96.82, 92.37, 65.38, 66.51, 79.76...
## $ PctTeen2Par           <dbl> 95.81, 86.46, 75.72, 67.43, 79.17, 75.33...
## $ PctWorkMomYoungKids   <dbl> 44.56, 51.14, 66.08, 59.59, 61.22, 62.96...
## $ PctWorkMom            <dbl> 58.88, 62.43, 74.19, 70.27, 68.94, 70.52...
## $ NumKidsBornNeverMar   <int> 31, 43, 164, 561, 402, 1511, 263, 2368, ...
## $ PctKidsBornNeverMar   <dbl> 0.36, 0.24, 0.88, 3.84, 4.70, 1.58, 1.18...
## $ NumImmig              <int> 1277, 1920, 1468, 339, 196, 2091, 2637, ...
## $ PctImmigRecent        <dbl> 8.69, 5.21, 16.42, 13.86, 46.94, 21.33, ...
## $ PctImmigRec5          <dbl> 13.00, 8.65, 23.98, 13.86, 56.12, 30.56,...
## $ PctImmigRec8          <dbl> 20.99, 13.33, 32.08, 15.34, 67.86, 38.02...
## $ PctImmigRec10         <dbl> 30.93, 22.50, 35.63, 15.34, 69.90, 45.48...
## $ PctRecentImmig        <dbl> 0.93, 0.43, 0.82, 0.28, 0.82, 0.32, 1.05...
## $ PctRecImmig5          <dbl> 1.39, 0.72, 1.20, 0.28, 0.98, 0.45, 1.49...
## $ PctRecImmig8          <dbl> 2.24, 1.11, 1.61, 0.31, 1.18, 0.57, 2.20...
## $ PctRecImmig10         <dbl> 3.30, 1.87, 1.78, 0.31, 1.22, 0.68, 2.55...
## $ PctSpeakEnglOnly      <dbl> 85.68, 87.79, 93.11, 94.98, 94.64, 96.87...
## $ PctNotSpeakEnglWell   <dbl> 1.37, 1.81, 1.14, 0.56, 0.39, 0.60, 0.60...
## $ PctLargHouseFam       <dbl> 4.81, 4.25, 2.97, 3.93, 5.23, 3.08, 5.08...
## $ PctLargHouseOccup     <dbl> 4.17, 3.34, 2.05, 2.56, 3.11, 1.92, 3.46...
## $ PersPerOccupHous      <dbl> 2.99, 2.70, 2.42, 2.37, 2.35, 2.28, 2.55...
## $ PersPerOwnOccHous     <dbl> 3.00, 2.83, 2.69, 2.51, 2.55, 2.37, 2.89...
## $ PersPerRentOccHous    <dbl> 2.84, 1.96, 2.06, 2.20, 2.12, 2.16, 2.09...
## $ PctPersOwnOccup       <dbl> 91.46, 89.03, 64.18, 58.18, 58.13, 57.81...
## $ PctPersDenseHous      <dbl> 0.39, 1.01, 2.03, 1.21, 2.94, 2.11, 1.47...
## $ PctHousLess3BR        <dbl> 11.06, 23.60, 47.46, 45.66, 55.64, 53.19...
## $ MedNumBR              <int> 3, 3, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3...
## $ HousVacant            <int> 64, 240, 544, 669, 333, 5119, 566, 2051,...
## $ PctHousOccup          <dbl> 98.37, 97.15, 95.68, 91.19, 92.45, 91.81...
## $ PctHousOwnOcc         <dbl> 91.01, 84.88, 57.79, 54.89, 53.57, 55.50...
## $ PctVacantBoarded      <dbl> 3.12, 0.00, 0.92, 2.54, 3.90, 2.09, 1.41...
## $ PctVacMore6Mos        <dbl> 37.50, 18.33, 7.54, 57.85, 42.64, 26.22,...
## $ MedYrHousBuilt        <int> 1959, 1958, 1976, 1939, 1958, 1966, 1956...
## $ PctHousNoPhone        <dbl> 0.00, 0.31, 1.55, 7.00, 7.45, 6.13, 0.69...
## $ PctWOFullPlumb        <dbl> 0.28, 0.14, 0.12, 0.87, 0.82, 0.31, 0.28...
## $ OwnOccLowQuart        <int> 215900, 136300, 74700, 36400, 30600, 377...
## $ OwnOccMedVal          <int> 262600, 164200, 90400, 49600, 43200, 539...
## $ OwnOccHiQuart         <int> 326900, 199900, 112000, 66500, 59500, 73...
## $ OwnOccQrange          <int> 111000, 63600, 37300, 30100, 28900, 3540...
## $ RentLowQ              <int> 685, 467, 370, 195, 202, 215, 463, 186, ...
## $ RentMedian            <int> 1001, 560, 428, 250, 283, 280, 669, 253,...
## $ RentHighQ             <int> 1001, 672, 520, 309, 362, 349, 824, 325,...
## $ RentQrange            <int> 316, 205, 150, 114, 160, 134, 361, 139, ...
## $ MedRent               <int> 1001, 627, 484, 333, 332, 340, 736, 338,...
## $ MedRentPctHousInc     <dbl> 23.8, 27.6, 24.1, 28.7, 32.2, 26.4, 24.4...
## $ MedOwnCostPctInc      <dbl> 21.1, 20.7, 21.7, 20.6, 23.2, 17.3, 20.8...
## $ MedOwnCostPctIncNoMtg <dbl> 14.0, 12.5, 11.6, 14.5, 12.9, 11.7, 12.5...
## $ NumInShelters         <int> 11, 0, 16, 0, 2, 327, 0, 21, 125, 43, 1,...
## $ NumStreet             <int> 0, 0, 0, 0, 0, 4, 0, 0, 15, 4, 0, 49, 2,...
## $ PctForeignBorn        <dbl> 10.66, 8.30, 5.00, 2.04, 1.74, 1.49, 9.1...
## $ PctBornSameState      <dbl> 53.72, 77.17, 44.77, 88.71, 73.75, 64.35...
## $ PctSameHouse85        <dbl> 65.29, 71.27, 36.60, 56.70, 42.22, 42.29...
## $ PctSameCity85         <dbl> 78.09, 90.22, 61.26, 90.17, 60.34, 70.61...
## $ PctSameState85        <dbl> 89.14, 96.12, 82.85, 96.24, 89.02, 85.66...
## $ LemasSwornFT          <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 198, ?, ?, ?,...
## $ LemasSwFTPerPop       <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 183.53, ?, ?,...
## $ LemasSwFTFieldOps     <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 187, ?, ?, ?,...
## $ LemasSwFTFieldPerPop  <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 173.33, ?, ?,...
## $ LemasTotalReq         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 73432, ?, ?, ...
## $ LemasTotReqPerPop     <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 68065.1, ?, ?...
## $ PolicReqPerOffic      <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 370.9, ?, ?, ...
## $ PolicPerPop           <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 183.5, ?, ?, ...
## $ RacialMatchCommPol    <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 89.32, ?, ?, ...
## $ PctPolicWhite         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 78.28, ?, ?, ...
## $ PctPolicBlack         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 11.11, ?, ?, ...
## $ PctPolicHisp          <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 10.61, ?, ?, ...
## $ PctPolicAsian         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 0, ?, ?, ?, 0...
## $ PctPolicMinor         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 21.72, ?, ?, ...
## $ OfficAssgnDrugUnits   <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 13, ?, ?, ?, ...
## $ NumKindsDrugsSeiz     <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 12, ?, ?, ?, ...
## $ PolicAveOTWorked      <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 60.2, ?, ?, ?...
## $ LandArea              <dbl> 6.5, 10.6, 10.6, 5.2, 11.5, 70.4, 10.9, ...
## $ PopDens               <dbl> 1845.9, 2186.7, 2780.9, 3217.7, 974.2, 1...
## $ PctUsePubTrans        <dbl> 9.63, 3.84, 4.37, 3.31, 0.38, 0.97, 9.62...
## $ PolicCars             <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 100, ?, ?, ?,...
## $ PolicOperBudg         <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 9315474, ?, ?...
## $ LemasPctPolicOnPatr   <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 94.44, ?, ?, ...
## $ LemasGangUnitDeploy   <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 10, ?, ?, ?, ...
## $ LemasPctOfficDrugUn   <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00...
## $ PolicBudgPerPop       <fct> ?, ?, ?, ?, ?, ?, ?, ?, ?, 86346.3, ?, ?...
## $ murders               <int> 0, 0, 3, 0, 0, 7, 0, 8, 0, 29, 1, 12, 3,...
## $ murdPerPop            <dbl> 0.00, 0.00, 8.30, 0.00, 0.00, 4.63, 0.00...
## $ rapes                 <fct> 0, 1, 6, 10, ?, 77, 4, 34, 35, 141, 29, ...
## $ rapesPerPop           <fct> 0, 4.25, 16.6, 57.86, ?, 50.98, 13.53, 5...
## $ robberies             <fct> 1, 5, 56, 10, 4, 136, 9, 98, 16, 453, 71...
## $ robbbPerPop           <fct> 8.2, 21.26, 154.95, 57.86, 32.04, 90.05,...
## $ assaults              <fct> 4, 24, 14, 33, 14, 449, 54, 128, 41, 104...
## $ assaultPerPop         <fct> 32.81, 102.05, 38.74, 190.93, 112.14, 29...
## $ burglaries            <fct> 14, 57, 274, 225, 91, 2094, 110, 608, 42...
## $ burglPerPop           <fct> 114.85, 242.37, 758.14, 1301.78, 728.93,...
## $ larcenies             <fct> 138, 376, 1797, 716, 1060, 7690, 288, 22...
## $ larcPerPop            <fct> 1132.08, 1598.78, 4972.19, 4142.56, 8490...
## $ autoTheft             <fct> 16, 26, 136, 47, 91, 454, 144, 125, 206,...
## $ autoTheftPerPop       <fct> 131.26, 110.55, 376.3, 271.93, 728.93, 3...
## $ arsons                <fct> 2, 1, 22, ?, 5, 134, 17, 9, 8, 18, 6, 20...
## $ arsonsPerPop          <fct> 16.41, 4.25, 60.87, ?, 40.05, 88.72, 57....
## $ ViolentCrimesPerPop   <fct> 41.02, 127.56, 218.59, 306.64, ?, 442.95...
## $ nonViolPerPop         <fct> 1394.59, 1955.95, 6167.51, ?, 9988.79, 6...
## 'data.frame':    2215 obs. of  147 variables:
##  $ communityname        : Factor w/ 2018 levels "Aberdeencity",..: 151 1035 1781 665 141 1700 1272 41 566 1860 ...
##  $ state                : Factor w/ 48 levels "AK","AL","AR",..: 29 36 35 32 23 24 19 15 27 41 ...
##  $ countyCode           : Factor w/ 115 levels "?","1","101",..: 57 60 1 55 84 1 46 1 40 1 ...
##  $ communityCode        : Factor w/ 960 levels "?","100","1000",..: 511 426 1 215 473 1 468 1 177 1 ...
##  $ fold                 : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ population           : int  11980 23123 29344 16656 11245 140494 28700 59459 74111 103590 ...
##  $ householdsize        : num  3.1 2.82 2.43 2.4 2.76 2.45 2.6 2.45 2.46 2.62 ...
##  $ racepctblack         : num  1.37 0.8 0.74 1.7 0.53 ...
##  $ racePctWhite         : num  91.8 95.6 94.3 97.3 89.2 ...
##  $ racePctAsian         : num  6.5 3.44 3.43 0.5 1.17 0.9 1.47 0.4 1.25 0.92 ...
##  $ racePctHisp          : num  1.88 0.85 2.35 0.7 0.52 ...
##  $ agePct12t21          : num  12.5 11 11.4 12.6 24.5 ...
##  $ agePct12t29          : num  21.4 21.3 25.9 25.2 40.5 ...
##  $ agePct16t24          : num  10.9 10.5 11 12.2 28.7 ...
##  $ agePct65up           : num  11.3 17.2 10.3 17.6 12.6 ...
##  $ numbUrban            : int  11980 23123 29344 0 0 140494 28700 59449 74115 103590 ...
##  $ pctUrban             : num  100 100 100 0 0 100 100 100 100 100 ...
##  $ medIncome            : int  75122 47917 35669 20580 17390 21577 42805 23221 25326 17852 ...
##  $ pctWWage             : num  89.2 79 82 68.2 69.3 ...
##  $ pctWFarmSelf         : num  1.55 1.11 1.15 0.24 0.55 1 0.39 0.67 2.93 0.86 ...
##  $ pctWInvInc           : num  70.2 64.1 55.7 39 42.8 ...
##  $ pctWSocSec           : num  23.6 35.5 22.2 39.5 32.2 ...
##  $ pctWPubAsst          : num  1.03 2.75 2.94 11.71 11.21 ...
##  $ pctWRetire           : num  18.4 22.9 14.6 18.3 14.4 ...
##  $ medFamInc            : int  79584 55323 42112 26501 24018 27705 50394 28901 34269 24058 ...
##  $ perCapInc            : int  29711 20148 16946 10810 8483 11878 18193 12161 13554 10195 ...
##  $ whitePerCap          : int  30233 20191 17103 10909 9009 12029 18276 12599 13727 12126 ...
##  $ blackPerCap          : int  13600 18137 16644 9984 887 7382 17342 9820 8852 5715 ...
##  $ indianPerCap         : int  5725 0 21606 4941 4425 10264 21482 6634 5344 11313 ...
##  $ AsianPerCap          : int  27101 20074 15528 3541 3352 10753 12639 8802 8011 5770 ...
##  $ OtherPerCap          : Factor w/ 1918 levels "?","0","10000",..: 1022 1049 1174 717 784 1418 681 1460 1068 1445 ...
##  $ HispPerCap           : int  22838 12222 8405 4391 1328 8104 22594 6187 5174 6984 ...
##  $ NumUnderPov          : int  227 885 1389 2831 2855 23223 1126 10320 9603 27767 ...
##  $ PctPopUnderPov       : num  1.96 3.98 4.75 17.23 29.99 ...
##  $ PctLess9thGrade      : num  5.81 5.61 2.8 11.05 12.15 ...
##  $ PctNotHSGrad         : num  9.9 13.72 9.09 33.68 23.06 ...
##  $ PctBSorMore          : num  48.2 29.9 30.1 10.8 25.3 ...
##  $ PctUnemployed        : num  2.7 2.43 4.01 9.86 9.08 5.72 4.85 8.19 4.18 8.39 ...
##  $ PctEmploy            : num  64.5 62 69.8 54.7 52.4 ...
##  $ PctEmplManu          : num  14.65 12.26 15.95 31.22 6.89 ...
##  $ PctEmplProfServ      : num  28.8 29.3 21.5 27.4 36.5 ...
##  $ PctOccupManu         : num  5.49 6.39 8.79 26.76 10.94 ...
##  $ PctOccupMgmtProf     : num  50.7 37.6 32.5 22.7 27.8 ...
##  $ MalePctDivorce       : num  3.67 4.23 10.1 10.98 7.51 ...
##  $ MalePctNevMarr       : num  26.4 28 25.8 28.1 50.7 ...
##  $ FemalePctDiv         : num  5.22 6.45 14.76 14.47 11.64 ...
##  $ TotalPctDiv          : num  4.47 5.42 12.55 12.91 9.73 ...
##  $ PersPerFam           : num  3.22 3.11 2.95 2.98 2.98 2.89 3.14 2.95 3 3.11 ...
##  $ PctFam2Par           : num  91.4 86.9 78.5 64 58.6 ...
##  $ PctKids2Par          : num  90.2 85.3 78.8 62.4 55.2 ...
##  $ PctYoungKids2Par     : num  95.8 96.8 92.4 65.4 66.5 ...
##  $ PctTeen2Par          : num  95.8 86.5 75.7 67.4 79.2 ...
##  $ PctWorkMomYoungKids  : num  44.6 51.1 66.1 59.6 61.2 ...
##  $ PctWorkMom           : num  58.9 62.4 74.2 70.3 68.9 ...
##  $ NumKidsBornNeverMar  : int  31 43 164 561 402 1511 263 2368 751 3537 ...
##  $ PctKidsBornNeverMar  : num  0.36 0.24 0.88 3.84 4.7 1.58 1.18 4.66 1.64 4.71 ...
##  $ NumImmig             : int  1277 1920 1468 339 196 2091 2637 517 1474 4793 ...
##  $ PctImmigRecent       : num  8.69 5.21 16.42 13.86 46.94 ...
##  $ PctImmigRec5         : num  13 8.65 23.98 13.86 56.12 ...
##  $ PctImmigRec8         : num  21 13.3 32.1 15.3 67.9 ...
##  $ PctImmigRec10        : num  30.9 22.5 35.6 15.3 69.9 ...
##  $ PctRecentImmig       : num  0.93 0.43 0.82 0.28 0.82 0.32 1.05 0.11 0.47 0.72 ...
##  $ PctRecImmig5         : num  1.39 0.72 1.2 0.28 0.98 0.45 1.49 0.2 0.67 1.07 ...
##  $ PctRecImmig8         : num  2.24 1.11 1.61 0.31 1.18 0.57 2.2 0.25 0.93 1.63 ...
##  $ PctRecImmig10        : num  3.3 1.87 1.78 0.31 1.22 0.68 2.55 0.29 1.07 2.31 ...
##  $ PctSpeakEnglOnly     : num  85.7 87.8 93.1 95 94.6 ...
##  $ PctNotSpeakEnglWell  : num  1.37 1.81 1.14 0.56 0.39 0.6 0.6 0.28 0.43 2.51 ...
##  $ PctLargHouseFam      : num  4.81 4.25 2.97 3.93 5.23 3.08 5.08 3.85 2.59 6.7 ...
##  $ PctLargHouseOccup    : num  4.17 3.34 2.05 2.56 3.11 1.92 3.46 2.55 1.54 4.1 ...
##  $ PersPerOccupHous     : num  2.99 2.7 2.42 2.37 2.35 2.28 2.55 2.36 2.32 2.45 ...
##  $ PersPerOwnOccHous    : num  3 2.83 2.69 2.51 2.55 2.37 2.89 2.42 2.77 2.47 ...
##  $ PersPerRentOccHous   : num  2.84 1.96 2.06 2.2 2.12 2.16 2.09 2.27 1.91 2.44 ...
##  $ PctPersOwnOccup      : num  91.5 89 64.2 58.2 58.1 ...
##  $ PctPersDenseHous     : num  0.39 1.01 2.03 1.21 2.94 2.11 1.47 1.9 1.67 6.14 ...
##  $ PctHousLess3BR       : num  11.1 23.6 47.5 45.7 55.6 ...
##  $ MedNumBR             : int  3 3 3 3 2 2 3 2 2 2 ...
##  $ HousVacant           : int  64 240 544 669 333 5119 566 2051 1562 5606 ...
##  $ PctHousOccup         : num  98.4 97.2 95.7 91.2 92.5 ...
##  $ PctHousOwnOcc        : num  91 84.9 57.8 54.9 53.6 ...
##  $ PctVacantBoarded     : num  3.12 0 0.92 2.54 3.9 2.09 1.41 6.39 0.45 5.64 ...
##  $ PctVacMore6Mos       : num  37.5 18.33 7.54 57.85 42.64 ...
##  $ MedYrHousBuilt       : int  1959 1958 1976 1939 1958 1966 1956 1954 1971 1960 ...
##  $ PctHousNoPhone       : num  0 0.31 1.55 7 7.45 ...
##  $ PctWOFullPlumb       : num  0.28 0.14 0.12 0.87 0.82 0.31 0.28 0.49 0.19 0.33 ...
##  $ OwnOccLowQuart       : int  215900 136300 74700 36400 30600 37700 155100 26300 54500 28600 ...
##  $ OwnOccMedVal         : int  262600 164200 90400 49600 43200 53900 179000 37000 70300 43100 ...
##  $ OwnOccHiQuart        : int  326900 199900 112000 66500 59500 73100 215500 52400 93700 67400 ...
##  $ OwnOccQrange         : int  111000 63600 37300 30100 28900 35400 60400 26100 39200 38800 ...
##  $ RentLowQ             : int  685 467 370 195 202 215 463 186 241 192 ...
##  $ RentMedian           : int  1001 560 428 250 283 280 669 253 321 281 ...
##  $ RentHighQ            : int  1001 672 520 309 362 349 824 325 387 369 ...
##  $ RentQrange           : int  316 205 150 114 160 134 361 139 146 177 ...
##  $ MedRent              : int  1001 627 484 333 332 340 736 338 355 353 ...
##  $ MedRentPctHousInc    : num  23.8 27.6 24.1 28.7 32.2 26.4 24.4 26.3 25.2 29.6 ...
##  $ MedOwnCostPctInc     : num  21.1 20.7 21.7 20.6 23.2 17.3 20.8 15.1 20.7 19.4 ...
##  $ MedOwnCostPctIncNoMtg: num  14 12.5 11.6 14.5 12.9 11.7 12.5 12.2 12.8 13 ...
##  $ NumInShelters        : int  11 0 16 0 2 327 0 21 125 43 ...
##  $ NumStreet            : int  0 0 0 0 0 4 0 0 15 4 ...
##  $ PctForeignBorn       : num  10.66 8.3 5 2.04 1.74 ...
##   [list output truncated]
##           communityname      state        countyCode   communityCode 
##  Auburncity      :   5   CA     : 279   ?      :1221   ?      :1224  
##  Greenvillecity  :   5   NJ     : 211   3      :  78   1000   :   3  
##  Jacksonvillecity:   5   TX     : 162   17     :  63   21000  :   3  
##  Springfieldcity :   5   MA     : 123   9      :  45   77200  :   3  
##  Albanycity      :   4   OH     : 111   1      :  40   79000  :   3  
##  Athenscity      :   4   MI     : 108   7      :  40   82000  :   3  
##  (Other)         :2187   (Other):1221   (Other): 728   (Other): 976  
##       fold          population      householdsize    racepctblack   
##  Min.   : 1.000   Min.   :  10005   Min.   :1.600   Min.   : 0.000  
##  1st Qu.: 3.000   1st Qu.:  14366   1st Qu.:2.500   1st Qu.: 0.860  
##  Median : 5.000   Median :  22792   Median :2.660   Median : 2.870  
##  Mean   : 5.494   Mean   :  53118   Mean   :2.707   Mean   : 9.335  
##  3rd Qu.: 8.000   3rd Qu.:  43024   3rd Qu.:2.850   3rd Qu.:11.145  
##  Max.   :10.000   Max.   :7322564   Max.   :5.280   Max.   :96.670  
##                                                                     
##   racePctWhite    racePctAsian    racePctHisp     agePct12t21   
##  Min.   : 2.68   Min.   : 0.03   Min.   : 0.12   Min.   : 4.58  
##  1st Qu.:76.32   1st Qu.: 0.62   1st Qu.: 0.93   1st Qu.:12.25  
##  Median :90.35   Median : 1.23   Median : 2.18   Median :13.62  
##  Mean   :83.98   Mean   : 2.67   Mean   : 7.95   Mean   :14.45  
##  3rd Qu.:96.22   3rd Qu.: 2.67   3rd Qu.: 7.81   3rd Qu.:15.36  
##  Max.   :99.63   Max.   :57.46   Max.   :95.29   Max.   :54.40  
##                                                                 
##   agePct12t29     agePct16t24      agePct65up      numbUrban      
##  Min.   : 9.38   Min.   : 4.64   Min.   : 1.66   Min.   :      0  
##  1st Qu.:24.41   1st Qu.:11.32   1st Qu.: 8.75   1st Qu.:      0  
##  Median :26.78   Median :12.54   Median :11.73   Median :  18041  
##  Mean   :27.64   Mean   :13.98   Mean   :11.84   Mean   :  47735  
##  3rd Qu.:29.20   3rd Qu.:14.35   3rd Qu.:14.41   3rd Qu.:  41918  
##  Max.   :70.51   Max.   :63.62   Max.   :52.77   Max.   :7322564  
##                                                                   
##     pctUrban        medIncome         pctWWage      pctWFarmSelf   
##  Min.   :  0.00   Min.   :  8866   Min.   :31.68   Min.   :0.0000  
##  1st Qu.:  0.00   1st Qu.: 23817   1st Qu.:73.40   1st Qu.:0.4600  
##  Median :100.00   Median : 31441   Median :78.61   Median :0.6900  
##  Mean   : 70.47   Mean   : 33985   Mean   :78.31   Mean   :0.8818  
##  3rd Qu.:100.00   3rd Qu.: 41481   3rd Qu.:84.03   3rd Qu.:1.1000  
##  Max.   :100.00   Max.   :123625   Max.   :96.76   Max.   :6.5300  
##                                                                    
##    pctWInvInc      pctWSocSec     pctWPubAsst       pctWRetire   
##  Min.   : 5.81   Min.   : 4.81   Min.   : 0.180   Min.   : 3.46  
##  1st Qu.:34.68   1st Qu.:20.77   1st Qu.: 3.270   1st Qu.:12.88  
##  Median :42.88   Median :26.59   Median : 5.610   Median :15.65  
##  Mean   :43.75   Mean   :26.41   Mean   : 6.801   Mean   :15.97  
##  3rd Qu.:52.74   3rd Qu.:31.71   3rd Qu.: 9.105   3rd Qu.:18.75  
##  Max.   :89.04   Max.   :76.39   Max.   :44.820   Max.   :45.51  
##                                                                  
##    medFamInc        perCapInc      whitePerCap     blackPerCap    
##  Min.   : 10447   Min.   : 5237   Min.   : 5472   Min.   :     0  
##  1st Qu.: 29538   1st Qu.:11602   1st Qu.:12610   1st Qu.:  6742  
##  Median : 36678   Median :14101   Median :15073   Median :  9777  
##  Mean   : 39857   Mean   :15604   Mean   :16568   Mean   : 11542  
##  3rd Qu.: 46999   3rd Qu.:17795   3rd Qu.:18610   3rd Qu.: 14526  
##  Max.   :139008   Max.   :63302   Max.   :68850   Max.   :212120  
##                                                                   
##   indianPerCap     AsianPerCap      OtherPerCap     HispPerCap   
##  Min.   :     0   Min.   :     0   0      : 140   Min.   :    0  
##  1st Qu.:  6345   1st Qu.:  8286   15000  :   6   1st Qu.: 7274  
##  Median :  9895   Median : 12250   10588  :   3   Median : 9721  
##  Mean   : 12229   Mean   : 14228   10870  :   3   Mean   :11019  
##  3rd Qu.: 14758   3rd Qu.: 17328   12000  :   3   3rd Qu.:13418  
##  Max.   :480000   Max.   :106165   13000  :   3   Max.   :54648  
##                                    (Other):2057                  
##   NumUnderPov        PctPopUnderPov  PctLess9thGrade   PctNotHSGrad  
##  Min.   :     78.0   Min.   : 0.64   Min.   : 0.200   Min.   : 1.46  
##  1st Qu.:    912.5   1st Qu.: 4.51   1st Qu.: 4.640   1st Qu.:13.92  
##  Median :   2142.0   Median : 9.33   Median : 7.740   Median :21.38  
##  Mean   :   7590.9   Mean   :11.62   Mean   : 9.187   Mean   :22.31  
##  3rd Qu.:   4988.0   3rd Qu.:16.91   3rd Qu.:11.835   3rd Qu.:29.20  
##  Max.   :1384994.0   Max.   :58.00   Max.   :49.890   Max.   :73.66  
##                                                                      
##   PctBSorMore    PctUnemployed      PctEmploy      PctEmplManu   
##  Min.   : 1.63   Min.   : 1.320   Min.   :24.82   Min.   : 2.05  
##  1st Qu.:14.10   1st Qu.: 4.045   1st Qu.:56.49   1st Qu.:12.21  
##  Median :19.65   Median : 5.450   Median :62.44   Median :17.30  
##  Mean   :23.06   Mean   : 6.045   Mean   :62.02   Mean   :18.23  
##  3rd Qu.:29.05   3rd Qu.: 7.440   3rd Qu.:67.83   3rd Qu.:23.40  
##  Max.   :79.18   Max.   :31.230   Max.   :84.67   Max.   :50.03  
##                                                                  
##  PctEmplProfServ  PctOccupManu   PctOccupMgmtProf MalePctDivorce  
##  Min.   : 8.69   Min.   : 1.37   Min.   : 6.48    Min.   : 2.130  
##  1st Qu.:20.07   1st Qu.: 9.13   1st Qu.:21.91    1st Qu.: 7.110  
##  Median :23.39   Median :13.15   Median :26.24    Median : 9.150  
##  Mean   :24.53   Mean   :13.82   Mean   :28.21    Mean   : 9.128  
##  3rd Qu.:27.59   3rd Qu.:17.66   3rd Qu.:32.81    3rd Qu.:11.050  
##  Max.   :62.67   Max.   :44.27   Max.   :64.97    Max.   :20.080  
##                                                                   
##  MalePctNevMarr   FemalePctDiv    TotalPctDiv       PersPerFam  
##  Min.   :12.06   Min.   : 3.35   Min.   : 2.830   Min.   :2.29  
##  1st Qu.:25.45   1st Qu.: 9.86   1st Qu.: 8.575   1st Qu.:2.99  
##  Median :29.00   Median :12.52   Median :10.900   Median :3.10  
##  Mean   :30.68   Mean   :12.33   Mean   :10.813   Mean   :3.13  
##  3rd Qu.:33.41   3rd Qu.:14.74   3rd Qu.:12.985   3rd Qu.:3.22  
##  Max.   :76.60   Max.   :23.92   Max.   :22.230   Max.   :4.64  
##                                                                 
##    PctFam2Par     PctKids2Par    PctYoungKids2Par  PctTeen2Par   
##  Min.   :22.97   Min.   :18.30   Min.   :  8.70   Min.   :20.20  
##  1st Qu.:67.90   1st Qu.:63.99   1st Qu.: 74.78   1st Qu.:70.17  
##  Median :75.03   Median :72.53   Median : 83.99   Median :76.92  
##  Mean   :74.06   Mean   :71.23   Mean   : 81.87   Mean   :75.52  
##  3rd Qu.:81.90   3rd Qu.:80.39   3rd Qu.: 91.67   3rd Qu.:82.77  
##  Max.   :93.60   Max.   :92.58   Max.   :100.00   Max.   :97.34  
##                                                                  
##  PctWorkMomYoungKids   PctWorkMom    NumKidsBornNeverMar
##  Min.   :24.42       Min.   :41.95   Min.   :     0     
##  1st Qu.:55.43       1st Qu.:64.90   1st Qu.:   147     
##  Median :60.71       Median :69.23   Median :   352     
##  Mean   :60.54       Mean   :68.85   Mean   :  2141     
##  3rd Qu.:65.98       3rd Qu.:73.50   3rd Qu.:  1032     
##  Max.   :87.97       Max.   :89.37   Max.   :527557     
##                                                         
##  PctKidsBornNeverMar    NumImmig       PctImmigRecent    PctImmigRec5  
##  Min.   : 0.000      Min.   :     20   Min.   : 0.000   Min.   : 0.00  
##  1st Qu.: 1.070      1st Qu.:    400   1st Qu.: 6.695   1st Qu.:11.26  
##  Median : 2.040      Median :   1024   Median :12.260   Median :19.08  
##  Mean   : 3.115      Mean   :   6277   Mean   :13.526   Mean   :20.42  
##  3rd Qu.: 3.910      3rd Qu.:   3302   3rd Qu.:17.950   3rd Qu.:27.45  
##  Max.   :27.350      Max.   :2082931   Max.   :64.290   Max.   :76.16  
##                                                                        
##   PctImmigRec8   PctImmigRec10   PctRecentImmig    PctRecImmig5   
##  Min.   : 0.00   Min.   : 0.00   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.:17.20   1st Qu.:22.73   1st Qu.: 0.170   1st Qu.: 0.280  
##  Median :26.72   Median :34.79   Median : 0.500   Median : 0.750  
##  Mean   :27.54   Mean   :34.73   Mean   : 1.099   Mean   : 1.697  
##  3rd Qu.:36.49   3rd Qu.:46.19   3rd Qu.: 1.310   3rd Qu.: 2.015  
##  Max.   :80.81   Max.   :88.00   Max.   :13.710   Max.   :19.930  
##                                                                   
##   PctRecImmig8    PctRecImmig10    PctSpeakEnglOnly PctNotSpeakEnglWell
##  Min.   : 0.000   Min.   : 0.000   Min.   : 6.15    Min.   : 0.000     
##  1st Qu.: 0.390   1st Qu.: 0.520   1st Qu.:84.38    1st Qu.: 0.510     
##  Median : 1.040   Median : 1.310   Median :92.18    Median : 0.920     
##  Mean   : 2.308   Mean   : 2.944   Mean   :87.07    Mean   : 2.406     
##  3rd Qu.: 2.700   3rd Qu.: 3.455   3rd Qu.:95.45    3rd Qu.: 2.270     
##  Max.   :25.340   Max.   :32.630   Max.   :98.98    Max.   :38.330     
##                                                                        
##  PctLargHouseFam  PctLargHouseOccup PersPerOccupHous PersPerOwnOccHous
##  Min.   : 0.960   Min.   : 0.440    Min.   :1.580    Min.   :1.61     
##  1st Qu.: 3.390   1st Qu.: 2.370    1st Qu.:2.410    1st Qu.:2.55     
##  Median : 4.280   Median : 3.050    Median :2.570    Median :2.71     
##  Mean   : 5.387   Mean   : 3.916    Mean   :2.616    Mean   :2.74     
##  3rd Qu.: 5.870   3rd Qu.: 4.210    3rd Qu.:2.770    3rd Qu.:2.90     
##  Max.   :34.870   Max.   :30.870    Max.   :4.520    Max.   :4.48     
##                                                                       
##  PersPerRentOccHous PctPersOwnOccup PctPersDenseHous PctHousLess3BR 
##  Min.   :1.550      Min.   :13.93   Min.   : 0.050   Min.   : 3.06  
##  1st Qu.:2.110      1st Qu.:57.28   1st Qu.: 1.290   1st Qu.:37.51  
##  Median :2.290      Median :65.91   Median : 2.340   Median :46.39  
##  Mean   :2.367      Mean   :66.37   Mean   : 4.132   Mean   :45.41  
##  3rd Qu.:2.530      3rd Qu.:76.58   3rd Qu.: 4.730   3rd Qu.:53.52  
##  Max.   :4.730      Max.   :97.24   Max.   :59.490   Max.   :95.34  
##                                                                     
##     MedNumBR       HousVacant        PctHousOccup   PctHousOwnOcc  
##  Min.   :1.000   Min.   :    36.0   Min.   :37.47   Min.   :16.86  
##  1st Qu.:2.000   1st Qu.:   304.5   1st Qu.:91.29   1st Qu.:54.82  
##  Median :3.000   Median :   558.0   Median :94.21   Median :62.83  
##  Mean   :2.641   Mean   :  1748.4   Mean   :92.93   Mean   :63.37  
##  3rd Qu.:3.000   3rd Qu.:  1228.0   3rd Qu.:96.02   3rd Qu.:72.64  
##  Max.   :4.000   Max.   :172768.0   Max.   :99.00   Max.   :96.49  
##                                                                    
##  PctVacantBoarded PctVacMore6Mos  MedYrHousBuilt PctHousNoPhone  
##  Min.   : 0.000   Min.   : 3.12   Min.   :1939   Min.   : 0.000  
##  1st Qu.: 0.720   1st Qu.:24.48   1st Qu.:1956   1st Qu.: 0.905  
##  Median : 1.660   Median :34.10   Median :1964   Median : 2.850  
##  Mean   : 2.779   Mean   :34.77   Mean   :1963   Mean   : 4.290  
##  3rd Qu.: 3.430   3rd Qu.:43.97   3rd Qu.:1971   3rd Qu.: 6.805  
##  Max.   :39.890   Max.   :82.13   Max.   :1987   Max.   :23.880  
##                                                                  
##  PctWOFullPlumb   OwnOccLowQuart    OwnOccMedVal    OwnOccHiQuart   
##  Min.   :0.0000   Min.   : 14999   Min.   : 19500   Min.   : 28200  
##  1st Qu.:0.1600   1st Qu.: 41500   1st Qu.: 56200   1st Qu.: 74300  
##  Median :0.3200   Median : 65500   Median : 82800   Median :106700  
##  Mean   :0.4253   Mean   : 88696   Mean   :113098   Mean   :145318  
##  3rd Qu.:0.5550   3rd Qu.:121500   3rd Qu.:150600   3rd Qu.:188000  
##  Max.   :5.3300   Max.   :500001   Max.   :500001   Max.   :500001  
##                                                                     
##   OwnOccQrange       RentLowQ        RentMedian       RentHighQ     
##  Min.   :     0   Min.   :  99.0   Min.   : 120.0   Min.   : 182.0  
##  1st Qu.: 32200   1st Qu.: 213.5   1st Qu.: 289.5   1st Qu.: 366.0  
##  Median : 43400   Median : 307.0   Median : 397.0   Median : 486.0  
##  Mean   : 56623   Mean   : 330.0   Mean   : 428.5   Mean   : 527.3  
##  3rd Qu.: 65450   3rd Qu.: 421.0   3rd Qu.: 544.0   3rd Qu.: 659.5  
##  Max.   :331000   Max.   :1001.0   Max.   :1001.0   Max.   :1001.0  
##                                                                     
##    RentQrange       MedRent       MedRentPctHousInc MedOwnCostPctInc
##  Min.   :  0.0   Min.   : 192.0   Min.   :14.9      Min.   :14.00   
##  1st Qu.:139.0   1st Qu.: 364.0   1st Qu.:24.3      1st Qu.:18.70   
##  Median :171.0   Median : 467.0   Median :26.1      Median :21.00   
##  Mean   :197.3   Mean   : 501.5   Mean   :26.3      Mean   :20.99   
##  3rd Qu.:232.5   3rd Qu.: 615.0   3rd Qu.:28.0      3rd Qu.:23.10   
##  Max.   :803.0   Max.   :1001.0   Max.   :35.1      Max.   :32.70   
##                                                                     
##  MedOwnCostPctIncNoMtg NumInShelters        NumStreet       
##  Min.   :10.10         Min.   :    0.00   Min.   :    0.00  
##  1st Qu.:12.00         1st Qu.:    0.00   1st Qu.:    0.00  
##  Median :12.80         Median :    0.00   Median :    0.00  
##  Mean   :13.01         Mean   :   66.95   Mean   :   17.82  
##  3rd Qu.:13.70         3rd Qu.:   22.00   3rd Qu.:    1.00  
##  Max.   :23.40         Max.   :23383.00   Max.   :10447.00  
##                                                             
##  PctForeignBorn  PctBornSameState PctSameHouse85  PctSameCity85  
##  Min.   : 0.18   Min.   : 6.75    Min.   :11.83   Min.   :27.95  
##  1st Qu.: 2.06   1st Qu.:50.11    1st Qu.:44.99   1st Qu.:72.06  
##  Median : 4.31   Median :64.49    Median :52.17   Median :79.49  
##  Mean   : 7.34   Mean   :61.54    Mean   :51.54   Mean   :77.41  
##  3rd Qu.: 9.25   3rd Qu.:74.86    3rd Qu.:58.74   3rd Qu.:85.14  
##  Max.   :60.40   Max.   :93.14    Max.   :78.56   Max.   :96.59  
##                                                                  
##  PctSameState85   LemasSwornFT  LemasSwFTPerPop LemasSwFTFieldOps
##  Min.   :32.83   ?      :1872   ?      :1872    ?      :1872     
##  1st Qu.:85.20   100    :   6   104.59 :   1    94     :   8     
##  Median :90.03   105    :   5   104.93 :   1    123    :   6     
##  Mean   :88.11   111    :   5   104.99 :   1    137    :   5     
##  3rd Qu.:93.01   117    :   5   105.54 :   1    102    :   4     
##  Max.   :99.90   91     :   5   106.01 :   1    105    :   4     
##                  (Other): 317   (Other): 338    (Other): 316     
##  LemasSwFTFieldPerPop LemasTotalReq  LemasTotReqPerPop PolicReqPerOffic
##  ?      :1872         ?      :1872   ?       :1872     ?      :1872    
##  183.22 :   2         100000 :   4   100078.4:   1     337    :   2    
##  101.55 :   1         50000  :   4   100747.8:   1     367    :   2    
##  101.9  :   1         150000 :   3   101139.5:   1     398.9  :   2    
##  102.08 :   1         40000  :   3   101223.8:   1     405.3  :   2    
##  102.22 :   1         107811 :   2   102017.4:   1     422.6  :   2    
##  (Other): 337         (Other): 327   (Other) : 338     (Other): 333    
##   PolicPerPop   RacialMatchCommPol PctPolicWhite  PctPolicBlack 
##  ?      :1872   ?      :1872       ?      :1872   ?      :1872  
##  109.6  :   2   100    :   7       100    :   6   0      :  26  
##  125.2  :   2   63.67  :   2       89.47  :   3   0.6    :   3  
##  145.8  :   2   80.05  :   2       92.86  :   3   0.69   :   3  
##  147.9  :   2   80.06  :   2       68.85  :   2   2.5    :   3  
##  153    :   2   82.16  :   2       80     :   2   0.56   :   2  
##  (Other): 333   (Other): 328       (Other): 327   (Other): 306  
##   PctPolicHisp  PctPolicAsian  PctPolicMinor  OfficAssgnDrugUnits
##  ?      :1872   ?      :1872   ?      :1872   ?      :1872       
##  0      :  79   0      : 203   0      :   8   6      :  36       
##  0.74   :   4   0.28   :   4   0.6    :   2   8      :  24       
##  0.32   :   3   0.32   :   3   0.69   :   2   12     :  20       
##  0.48   :   3   0.38   :   3   0.71   :   2   4      :  20       
##  4      :   3   0.42   :   3   0.76   :   2   7      :  18       
##  (Other): 251   (Other): 127   (Other): 327   (Other): 225       
##  NumKindsDrugsSeiz PolicAveOTWorked    LandArea          PopDens     
##  ?      :1872      ?      :1872     Min.   :   0.90   Min.   :   10  
##  9      :  59      0      :   6     1st Qu.:   7.30   1st Qu.: 1182  
##  10     :  46      117.3  :   3     Median :  13.70   Median : 2027  
##  8      :  46      105.7  :   2     Mean   :  27.42   Mean   : 2784  
##  7      :  37      107.6  :   2     3rd Qu.:  26.10   3rd Qu.: 3322  
##  6      :  27      116.2  :   2     Max.   :3569.80   Max.   :44230  
##  (Other): 128      (Other): 328                                      
##  PctUsePubTrans     PolicCars      PolicOperBudg  LemasPctPolicOnPatr
##  Min.   : 0.000   ?      :1872   ?        :1872   ?      :1872       
##  1st Qu.: 0.360   55     :   8   4700000  :   2   88.89  :   3       
##  Median : 1.220   36     :   6   8000000  :   2   90.48  :   3       
##  Mean   : 3.041   40     :   6   10000000 :   1   93.07  :   3       
##  3rd Qu.: 3.365   100    :   5   10001186 :   1   93.33  :   3       
##  Max.   :54.330   105    :   5   100274208:   1   83.87  :   2       
##                   (Other): 313   (Other)  : 336   (Other): 329       
##  LemasGangUnitDeploy LemasPctOfficDrugUn PolicBudgPerPop
##  ? :1872             Min.   : 0.0000     ?       :1872  
##  0 : 141             1st Qu.: 0.0000     100841.5:   1  
##  10:  92             Median : 0.0000     101393.7:   1  
##  5 : 110             Mean   : 0.9802     101405.1:   1  
##                      3rd Qu.: 0.0000     101501.3:   1  
##                      Max.   :48.4400     101771.3:   1  
##                                          (Other) : 338  
##     murders           murdPerPop         rapes       rapesPerPop  
##  Min.   :   0.000   Min.   : 0.000   ?      : 208   ?      : 208  
##  1st Qu.:   0.000   1st Qu.: 0.000   0      : 189   0      : 189  
##  Median :   1.000   Median : 2.170   1      : 180   10.77  :   3  
##  Mean   :   7.765   Mean   : 5.859   2      : 159   12.83  :   3  
##  3rd Qu.:   3.000   3rd Qu.: 8.365   3      : 141   19.13  :   3  
##  Max.   :1946.000   Max.   :91.090   4      : 122   19.14  :   3  
##                                      (Other):1216   (Other):1806  
##    robberies     robbbPerPop      assaults    assaultPerPop 
##  1      : 114   0      :  86   12     :  40   0      :  18  
##  3      : 102   14.47  :   3   9      :  39   ?      :  13  
##  2      :  96   21.86  :   3   7      :  38   105.27 :   2  
##  0      :  86   28.72  :   3   4      :  35   123.3  :   2  
##  4      :  86   101.77 :   2   5      :  33   138.45 :   2  
##  5      :  77   105.1  :   2   6      :  33   141.21 :   2  
##  (Other):1654   (Other):2116   (Other):1997   (Other):2176  
##    burglaries    burglPerPop     larcenies       larcPerPop  
##  79     :  15   ?      :   3   218    :   6   ?       :   3  
##  62     :  13   1440.25:   2   294    :   6   4631.1  :   2  
##  64     :  12   1769.39:   2   357    :   6   10005.65:   1  
##  108    :  11   281.58 :   2   467    :   6   1004.15 :   1  
##  58     :  11   370.72 :   2   547    :   6   1005.91 :   1  
##  63     :  11   500.23 :   2   207    :   5   1006.63 :   1  
##  (Other):2142   (Other):2202   (Other):2180   (Other) :2206  
##    autoTheft    autoTheftPerPop     arsons      arsonsPerPop 
##  16     :  28   ?      :   3    0      : 323   0      : 323  
##  32     :  28   213.62 :   3    1      : 236   ?      :  91  
##  19     :  26   105.17 :   2    2      : 155   17.53  :   4  
##  26     :  26   107.63 :   2    3      : 151   31.75  :   4  
##  31     :  26   109.15 :   2    4      : 114   4.25   :   4  
##  10     :  25   122.09 :   2    5      :  96   63.69  :   4  
##  (Other):2056   (Other):2201    (Other):1140   (Other):1785  
##  ViolentCrimesPerPop nonViolPerPop 
##  ?      : 221        ?      :  97  
##  223.06 :   3        2246.14:   2  
##  103.33 :   2        2998.85:   2  
##  105.23 :   2        4012.32:   2  
##  115.14 :   2        4295.96:   2  
##  144.9  :   2        5613.23:   2  
##  (Other):1983        (Other):2108

Our dataset has 2215 rows of observations and 147 columns of variables To start cleaning we ran glimpse function that returned an overview of our dataset, including the variable list, variable types, and the first few values. Also variable Êcommunityname is renamed to communityname

## [1] communityname||state count(1)            
## <0 rows> (or 0-length row.names)
## [1] "numeric"

144 duplicates were found in crime data set when looked up by community name. By concatenating community names with states, we could eliminate these redundent entries.

Example of using sapply and Lapply

## [1] 148
## [1] 2215
## 'data.frame':    2215 obs. of  148 variables:
##  $ citystate            : chr  "BerkeleyHeightstownshipNJ" "MarpletownshipPA" "TigardcityOR" "GloversvillecityNY" ...
##  $ communityname        : Factor w/ 2018 levels "Aberdeencity",..: 151 1035 1781 665 141 1700 1272 41 566 1860 ...
##  $ state                : Factor w/ 48 levels "AK","AL","AR",..: 29 36 35 32 23 24 19 15 27 41 ...
##  $ countyCode           : chr  "39" "45" "?" "35" ...
##  $ communityCode        : chr  "5320" "47616" "?" "29443" ...
##  $ fold                 : chr  "1" "1" "1" "1" ...
##  $ population           : chr  "11980" "23123" "29344" "16656" ...
##  $ householdsize        : chr  "3.1" "2.82" "2.43" "2.4" ...
##  $ racepctblack         : chr  "1.37" "0.8" "0.74" "1.7" ...
##  $ racePctWhite         : chr  "91.78" "95.57" "94.33" "97.35" ...
##  $ racePctAsian         : chr  "6.5" "3.44" "3.43" "0.5" ...
##  $ racePctHisp          : chr  "1.88" "0.85" "2.35" "0.7" ...
##  $ agePct12t21          : chr  "12.47" "11.01" "11.36" "12.55" ...
##  $ agePct12t29          : chr  "21.44" "21.3" "25.88" "25.2" ...
##  $ agePct16t24          : chr  "10.93" "10.48" "11.01" "12.19" ...
##  $ agePct65up           : chr  "11.33" "17.18" "10.28" "17.57" ...
##  $ numbUrban            : chr  "11980" "23123" "29344" "0" ...
##  $ pctUrban             : chr  "100" "100" "100" "0" ...
##  $ medIncome            : chr  "75122" "47917" "35669" "20580" ...
##  $ pctWWage             : chr  "89.24" "78.99" "82" "68.15" ...
##  $ pctWFarmSelf         : chr  "1.55" "1.11" "1.15" "0.24" ...
##  $ pctWInvInc           : chr  "70.2" "64.11" "55.73" "38.95" ...
##  $ pctWSocSec           : chr  "23.62" "35.5" "22.25" "39.48" ...
##  $ pctWPubAsst          : chr  "1.03" "2.75" "2.94" "11.71" ...
##  $ pctWRetire           : chr  "18.39" "22.85" "14.56" "18.33" ...
##  $ medFamInc            : chr  "79584" "55323" "42112" "26501" ...
##  $ perCapInc            : chr  "29711" "20148" "16946" "10810" ...
##  $ whitePerCap          : chr  "30233" "20191" "17103" "10909" ...
##  $ blackPerCap          : chr  "13600" "18137" "16644" "9984" ...
##  $ indianPerCap         : chr  "5725" "0" "21606" "4941" ...
##  $ AsianPerCap          : chr  "27101" "20074" "15528" "3541" ...
##  $ OtherPerCap          : chr  "5115" "5250" "5954" "2451" ...
##  $ HispPerCap           : chr  "22838" "12222" "8405" "4391" ...
##  $ NumUnderPov          : chr  "227" "885" "1389" "2831" ...
##  $ PctPopUnderPov       : chr  "1.96" "3.98" "4.75" "17.23" ...
##  $ PctLess9thGrade      : chr  "5.81" "5.61" "2.8" "11.05" ...
##  $ PctNotHSGrad         : chr  "9.9" "13.72" "9.09" "33.68" ...
##  $ PctBSorMore          : chr  "48.18" "29.89" "30.13" "10.81" ...
##  $ PctUnemployed        : chr  "2.7" "2.43" "4.01" "9.86" ...
##  $ PctEmploy            : chr  "64.55" "61.96" "69.8" "54.74" ...
##  $ PctEmplManu          : chr  "14.65" "12.26" "15.95" "31.22" ...
##  $ PctEmplProfServ      : chr  "28.82" "29.28" "21.52" "27.43" ...
##  $ PctOccupManu         : chr  "5.49" "6.39" "8.79" "26.76" ...
##  $ PctOccupMgmtProf     : chr  "50.73" "37.64" "32.48" "22.71" ...
##  $ MalePctDivorce       : chr  "3.67" "4.23" "10.1" "10.98" ...
##  $ MalePctNevMarr       : chr  "26.38" "27.99" "25.78" "28.15" ...
##  $ FemalePctDiv         : chr  "5.22" "6.45" "14.76" "14.47" ...
##  $ TotalPctDiv          : chr  "4.47" "5.42" "12.55" "12.91" ...
##  $ PersPerFam           : chr  "3.22" "3.11" "2.95" "2.98" ...
##  $ PctFam2Par           : chr  "91.43" "86.91" "78.54" "64.02" ...
##  $ PctKids2Par          : chr  "90.17" "85.33" "78.85" "62.36" ...
##  $ PctYoungKids2Par     : chr  "95.78" "96.82" "92.37" "65.38" ...
##  $ PctTeen2Par          : chr  "95.81" "86.46" "75.72" "67.43" ...
##  $ PctWorkMomYoungKids  : chr  "44.56" "51.14" "66.08" "59.59" ...
##  $ PctWorkMom           : chr  "58.88" "62.43" "74.19" "70.27" ...
##  $ NumKidsBornNeverMar  : chr  "31" "43" "164" "561" ...
##  $ PctKidsBornNeverMar  : chr  "0.36" "0.24" "0.88" "3.84" ...
##  $ NumImmig             : chr  "1277" "1920" "1468" "339" ...
##  $ PctImmigRecent       : chr  "8.69" "5.21" "16.42" "13.86" ...
##  $ PctImmigRec5         : chr  "13" "8.65" "23.98" "13.86" ...
##  $ PctImmigRec8         : chr  "20.99" "13.33" "32.08" "15.34" ...
##  $ PctImmigRec10        : chr  "30.93" "22.5" "35.63" "15.34" ...
##  $ PctRecentImmig       : chr  "0.93" "0.43" "0.82" "0.28" ...
##  $ PctRecImmig5         : chr  "1.39" "0.72" "1.2" "0.28" ...
##  $ PctRecImmig8         : chr  "2.24" "1.11" "1.61" "0.31" ...
##  $ PctRecImmig10        : chr  "3.3" "1.87" "1.78" "0.31" ...
##  $ PctSpeakEnglOnly     : chr  "85.68" "87.79" "93.11" "94.98" ...
##  $ PctNotSpeakEnglWell  : chr  "1.37" "1.81" "1.14" "0.56" ...
##  $ PctLargHouseFam      : chr  "4.81" "4.25" "2.97" "3.93" ...
##  $ PctLargHouseOccup    : chr  "4.17" "3.34" "2.05" "2.56" ...
##  $ PersPerOccupHous     : chr  "2.99" "2.7" "2.42" "2.37" ...
##  $ PersPerOwnOccHous    : chr  "3" "2.83" "2.69" "2.51" ...
##  $ PersPerRentOccHous   : chr  "2.84" "1.96" "2.06" "2.2" ...
##  $ PctPersOwnOccup      : chr  "91.46" "89.03" "64.18" "58.18" ...
##  $ PctPersDenseHous     : chr  "0.39" "1.01" "2.03" "1.21" ...
##  $ PctHousLess3BR       : chr  "11.06" "23.6" "47.46" "45.66" ...
##  $ MedNumBR             : chr  "3" "3" "3" "3" ...
##  $ HousVacant           : chr  "64" "240" "544" "669" ...
##  $ PctHousOccup         : chr  "98.37" "97.15" "95.68" "91.19" ...
##  $ PctHousOwnOcc        : chr  "91.01" "84.88" "57.79" "54.89" ...
##  $ PctVacantBoarded     : chr  "3.12" "0" "0.92" "2.54" ...
##  $ PctVacMore6Mos       : chr  "37.5" "18.33" "7.54" "57.85" ...
##  $ MedYrHousBuilt       : chr  "1959" "1958" "1976" "1939" ...
##  $ PctHousNoPhone       : chr  "0" "0.31" "1.55" "7" ...
##  $ PctWOFullPlumb       : chr  "0.28" "0.14" "0.12" "0.87" ...
##  $ OwnOccLowQuart       : chr  "215900" "136300" "74700" "36400" ...
##  $ OwnOccMedVal         : chr  "262600" "164200" "90400" "49600" ...
##  $ OwnOccHiQuart        : chr  "326900" "199900" "112000" "66500" ...
##  $ OwnOccQrange         : chr  "111000" "63600" "37300" "30100" ...
##  $ RentLowQ             : chr  "685" "467" "370" "195" ...
##  $ RentMedian           : chr  "1001" "560" "428" "250" ...
##  $ RentHighQ            : chr  "1001" "672" "520" "309" ...
##  $ RentQrange           : chr  "316" "205" "150" "114" ...
##  $ MedRent              : chr  "1001" "627" "484" "333" ...
##  $ MedRentPctHousInc    : chr  "23.8" "27.6" "24.1" "28.7" ...
##  $ MedOwnCostPctInc     : chr  "21.1" "20.7" "21.7" "20.6" ...
##  $ MedOwnCostPctIncNoMtg: chr  "14" "12.5" "11.6" "14.5" ...
##  $ NumInShelters        : chr  "11" "0" "16" "0" ...
##  $ NumStreet            : chr  "0" "0" "0" "0" ...
##   [list output truncated]
## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion

## Warning in lapply(X = X, FUN = FUN, ...): NAs introduced by coercion
## 'data.frame':    2215 obs. of  148 variables:
##  $ citystate            : chr  "BerkeleyHeightstownshipNJ" "MarpletownshipPA" "TigardcityOR" "GloversvillecityNY" ...
##  $ communityname        : Factor w/ 2018 levels "Aberdeencity",..: 151 1035 1781 665 141 1700 1272 41 566 1860 ...
##  $ state                : Factor w/ 48 levels "AK","AL","AR",..: 29 36 35 32 23 24 19 15 27 41 ...
##  $ countyCode           : num  39 45 NA 35 7 NA 21 NA 17 NA ...
##  $ communityCode        : num  5320 47616 NA 29443 5068 ...
##  $ fold                 : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ population           : num  11980 23123 29344 16656 11245 ...
##  $ householdsize        : num  3.1 2.82 2.43 2.4 2.76 2.45 2.6 2.45 2.46 2.62 ...
##  $ racepctblack         : num  1.37 0.8 0.74 1.7 0.53 ...
##  $ racePctWhite         : num  91.8 95.6 94.3 97.3 89.2 ...
##  $ racePctAsian         : num  6.5 3.44 3.43 0.5 1.17 0.9 1.47 0.4 1.25 0.92 ...
##  $ racePctHisp          : num  1.88 0.85 2.35 0.7 0.52 ...
##  $ agePct12t21          : num  12.5 11 11.4 12.6 24.5 ...
##  $ agePct12t29          : num  21.4 21.3 25.9 25.2 40.5 ...
##  $ agePct16t24          : num  10.9 10.5 11 12.2 28.7 ...
##  $ agePct65up           : num  11.3 17.2 10.3 17.6 12.6 ...
##  $ numbUrban            : num  11980 23123 29344 0 0 ...
##  $ pctUrban             : num  100 100 100 0 0 100 100 100 100 100 ...
##  $ medIncome            : num  75122 47917 35669 20580 17390 ...
##  $ pctWWage             : num  89.2 79 82 68.2 69.3 ...
##  $ pctWFarmSelf         : num  1.55 1.11 1.15 0.24 0.55 1 0.39 0.67 2.93 0.86 ...
##  $ pctWInvInc           : num  70.2 64.1 55.7 39 42.8 ...
##  $ pctWSocSec           : num  23.6 35.5 22.2 39.5 32.2 ...
##  $ pctWPubAsst          : num  1.03 2.75 2.94 11.71 11.21 ...
##  $ pctWRetire           : num  18.4 22.9 14.6 18.3 14.4 ...
##  $ medFamInc            : num  79584 55323 42112 26501 24018 ...
##  $ perCapInc            : num  29711 20148 16946 10810 8483 ...
##  $ whitePerCap          : num  30233 20191 17103 10909 9009 ...
##  $ blackPerCap          : num  13600 18137 16644 9984 887 ...
##  $ indianPerCap         : num  5725 0 21606 4941 4425 ...
##  $ AsianPerCap          : num  27101 20074 15528 3541 3352 ...
##  $ OtherPerCap          : num  5115 5250 5954 2451 3000 ...
##  $ HispPerCap           : num  22838 12222 8405 4391 1328 ...
##  $ NumUnderPov          : num  227 885 1389 2831 2855 ...
##  $ PctPopUnderPov       : num  1.96 3.98 4.75 17.23 29.99 ...
##  $ PctLess9thGrade      : num  5.81 5.61 2.8 11.05 12.15 ...
##  $ PctNotHSGrad         : num  9.9 13.72 9.09 33.68 23.06 ...
##  $ PctBSorMore          : num  48.2 29.9 30.1 10.8 25.3 ...
##  $ PctUnemployed        : num  2.7 2.43 4.01 9.86 9.08 5.72 4.85 8.19 4.18 8.39 ...
##  $ PctEmploy            : num  64.5 62 69.8 54.7 52.4 ...
##  $ PctEmplManu          : num  14.65 12.26 15.95 31.22 6.89 ...
##  $ PctEmplProfServ      : num  28.8 29.3 21.5 27.4 36.5 ...
##  $ PctOccupManu         : num  5.49 6.39 8.79 26.76 10.94 ...
##  $ PctOccupMgmtProf     : num  50.7 37.6 32.5 22.7 27.8 ...
##  $ MalePctDivorce       : num  3.67 4.23 10.1 10.98 7.51 ...
##  $ MalePctNevMarr       : num  26.4 28 25.8 28.1 50.7 ...
##  $ FemalePctDiv         : num  5.22 6.45 14.76 14.47 11.64 ...
##  $ TotalPctDiv          : num  4.47 5.42 12.55 12.91 9.73 ...
##  $ PersPerFam           : num  3.22 3.11 2.95 2.98 2.98 2.89 3.14 2.95 3 3.11 ...
##  $ PctFam2Par           : num  91.4 86.9 78.5 64 58.6 ...
##  $ PctKids2Par          : num  90.2 85.3 78.8 62.4 55.2 ...
##  $ PctYoungKids2Par     : num  95.8 96.8 92.4 65.4 66.5 ...
##  $ PctTeen2Par          : num  95.8 86.5 75.7 67.4 79.2 ...
##  $ PctWorkMomYoungKids  : num  44.6 51.1 66.1 59.6 61.2 ...
##  $ PctWorkMom           : num  58.9 62.4 74.2 70.3 68.9 ...
##  $ NumKidsBornNeverMar  : num  31 43 164 561 402 ...
##  $ PctKidsBornNeverMar  : num  0.36 0.24 0.88 3.84 4.7 1.58 1.18 4.66 1.64 4.71 ...
##  $ NumImmig             : num  1277 1920 1468 339 196 ...
##  $ PctImmigRecent       : num  8.69 5.21 16.42 13.86 46.94 ...
##  $ PctImmigRec5         : num  13 8.65 23.98 13.86 56.12 ...
##  $ PctImmigRec8         : num  21 13.3 32.1 15.3 67.9 ...
##  $ PctImmigRec10        : num  30.9 22.5 35.6 15.3 69.9 ...
##  $ PctRecentImmig       : num  0.93 0.43 0.82 0.28 0.82 0.32 1.05 0.11 0.47 0.72 ...
##  $ PctRecImmig5         : num  1.39 0.72 1.2 0.28 0.98 0.45 1.49 0.2 0.67 1.07 ...
##  $ PctRecImmig8         : num  2.24 1.11 1.61 0.31 1.18 0.57 2.2 0.25 0.93 1.63 ...
##  $ PctRecImmig10        : num  3.3 1.87 1.78 0.31 1.22 0.68 2.55 0.29 1.07 2.31 ...
##  $ PctSpeakEnglOnly     : num  85.7 87.8 93.1 95 94.6 ...
##  $ PctNotSpeakEnglWell  : num  1.37 1.81 1.14 0.56 0.39 0.6 0.6 0.28 0.43 2.51 ...
##  $ PctLargHouseFam      : num  4.81 4.25 2.97 3.93 5.23 3.08 5.08 3.85 2.59 6.7 ...
##  $ PctLargHouseOccup    : num  4.17 3.34 2.05 2.56 3.11 1.92 3.46 2.55 1.54 4.1 ...
##  $ PersPerOccupHous     : num  2.99 2.7 2.42 2.37 2.35 2.28 2.55 2.36 2.32 2.45 ...
##  $ PersPerOwnOccHous    : num  3 2.83 2.69 2.51 2.55 2.37 2.89 2.42 2.77 2.47 ...
##  $ PersPerRentOccHous   : num  2.84 1.96 2.06 2.2 2.12 2.16 2.09 2.27 1.91 2.44 ...
##  $ PctPersOwnOccup      : num  91.5 89 64.2 58.2 58.1 ...
##  $ PctPersDenseHous     : num  0.39 1.01 2.03 1.21 2.94 2.11 1.47 1.9 1.67 6.14 ...
##  $ PctHousLess3BR       : num  11.1 23.6 47.5 45.7 55.6 ...
##  $ MedNumBR             : num  3 3 3 3 2 2 3 2 2 2 ...
##  $ HousVacant           : num  64 240 544 669 333 ...
##  $ PctHousOccup         : num  98.4 97.2 95.7 91.2 92.5 ...
##  $ PctHousOwnOcc        : num  91 84.9 57.8 54.9 53.6 ...
##  $ PctVacantBoarded     : num  3.12 0 0.92 2.54 3.9 2.09 1.41 6.39 0.45 5.64 ...
##  $ PctVacMore6Mos       : num  37.5 18.33 7.54 57.85 42.64 ...
##  $ MedYrHousBuilt       : num  1959 1958 1976 1939 1958 ...
##  $ PctHousNoPhone       : num  0 0.31 1.55 7 7.45 ...
##  $ PctWOFullPlumb       : num  0.28 0.14 0.12 0.87 0.82 0.31 0.28 0.49 0.19 0.33 ...
##  $ OwnOccLowQuart       : num  215900 136300 74700 36400 30600 ...
##  $ OwnOccMedVal         : num  262600 164200 90400 49600 43200 ...
##  $ OwnOccHiQuart        : num  326900 199900 112000 66500 59500 ...
##  $ OwnOccQrange         : num  111000 63600 37300 30100 28900 35400 60400 26100 39200 38800 ...
##  $ RentLowQ             : num  685 467 370 195 202 215 463 186 241 192 ...
##  $ RentMedian           : num  1001 560 428 250 283 ...
##  $ RentHighQ            : num  1001 672 520 309 362 ...
##  $ RentQrange           : num  316 205 150 114 160 134 361 139 146 177 ...
##  $ MedRent              : num  1001 627 484 333 332 ...
##  $ MedRentPctHousInc    : num  23.8 27.6 24.1 28.7 32.2 26.4 24.4 26.3 25.2 29.6 ...
##  $ MedOwnCostPctInc     : num  21.1 20.7 21.7 20.6 23.2 17.3 20.8 15.1 20.7 19.4 ...
##  $ MedOwnCostPctIncNoMtg: num  14 12.5 11.6 14.5 12.9 11.7 12.5 12.2 12.8 13 ...
##  $ NumInShelters        : num  11 0 16 0 2 327 0 21 125 43 ...
##  $ NumStreet            : num  0 0 0 0 0 4 0 0 15 4 ...
##   [list output truncated]
## [1] NA
## [1] 589.0789

When we change factor to numeric, sometimes it creats hidden issues like errors. So we chose to change factors to characters and then change characters to numeric. From warning we noticed there were NAs introduced by coercion, as the ? symbols were replaced by NAs. We fixed these newly introduced NAs by using sqldf function/

Plots for Crime Dataset

We collected state coordinates for map data, and Converted state abbreviation into full names.We excluded DC from the state data and then appended crime data to the state map.