library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
dta<-ls("package:MASS")
dta
## [1] "abbey" "accdeaths" "addterm"
## [4] "Aids2" "Animals" "anorexia"
## [7] "area" "as.fractions" "bacteria"
## [10] "bandwidth.nrd" "bcv" "beav1"
## [13] "beav2" "biopsy" "birthwt"
## [16] "Boston" "boxcox" "cabbages"
## [19] "caith" "Cars93" "cats"
## [22] "cement" "chem" "con2tr"
## [25] "contr.sdif" "coop" "corresp"
## [28] "cov.mcd" "cov.mve" "cov.rob"
## [31] "cov.trob" "cpus" "crabs"
## [34] "Cushings" "DDT" "deaths"
## [37] "denumerate" "dose.p" "drivers"
## [40] "dropterm" "eagles" "enlist"
## [43] "epil" "eqscplot" "farms"
## [46] "fbeta" "fgl" "fitdistr"
## [49] "forbes" "fractions" "frequency.polygon"
## [52] "GAGurine" "galaxies" "gamma.dispersion"
## [55] "gamma.shape" "gehan" "genotype"
## [58] "geyser" "gilgais" "ginv"
## [61] "glm.convert" "glm.nb" "glmmPQL"
## [64] "hills" "hist.FD" "hist.scott"
## [67] "housing" "huber" "hubers"
## [70] "immer" "Insurance" "is.fractions"
## [73] "isoMDS" "kde2d" "lda"
## [76] "ldahist" "leuk" "lm.gls"
## [79] "lm.ridge" "lmsreg" "lmwork"
## [82] "loglm" "loglm1" "logtrans"
## [85] "lqs" "lqs.formula" "ltsreg"
## [88] "mammals" "mca" "mcycle"
## [91] "Melanoma" "menarche" "michelson"
## [94] "minn38" "motors" "muscle"
## [97] "mvrnorm" "nclass.freq" "neg.bin"
## [100] "negative.binomial" "negexp.SSival" "newcomb"
## [103] "nlschools" "npk" "npr1"
## [106] "Null" "oats" "OME"
## [109] "painters" "parcoord" "petrol"
## [112] "phones" "Pima.te" "Pima.tr"
## [115] "Pima.tr2" "polr" "psi.bisquare"
## [118] "psi.hampel" "psi.huber" "qda"
## [121] "quine" "Rabbit" "rational"
## [124] "renumerate" "rlm" "rms.curv"
## [127] "rnegbin" "road" "rotifer"
## [130] "Rubber" "sammon" "select"
## [133] "Shepard" "ships" "shoes"
## [136] "shrimp" "shuttle" "Sitka"
## [139] "Sitka89" "Skye" "snails"
## [142] "SP500" "stdres" "steam"
## [145] "stepAIC" "stormer" "studres"
## [148] "survey" "synth.te" "synth.tr"
## [151] "theta.md" "theta.ml" "theta.mm"
## [154] "topo" "Traffic" "truehist"
## [157] "ucv" "UScereal" "UScrime"
## [160] "VA" "waders" "whiteside"
## [163] "width.SJ" "write.matrix" "wtloss"
由上面結果可知MASS裡面共有165個項目
顯示第94到103項
dta[c(94:103)]
## [1] "minn38" "motors" "muscle"
## [4] "mvrnorm" "nclass.freq" "neg.bin"
## [7] "negative.binomial" "negexp.SSival" "newcomb"
## [10] "nlschools"
看women這筆資料前六筆
WOMEN<-women
head(WOMEN)
## height weight
## 1 58 115
## 2 59 117
## 3 60 120
## 4 61 123
## 5 62 126
## 6 63 129
運算身高平均
mean(WOMEN$height)
## [1] 65
將women的平均身高儲存成變項height_centered
mean_height<-rep(65,15)
WOMEN<-data.frame(WOMEN,mean_height)
height_centered<-with(WOMEN,WOMEN$height-WOMEN$mean_height)
WOMEN<-data.frame(WOMEN,height_centered)
提取迴歸係數
coef(lm(weight~height,data=WOMEN))
## (Intercept) height
## -87.51667 3.45000
coef(lm(weight~height_centered,data=WOMEN))
## (Intercept) height_centered
## 136.7333 3.4500
將X作左右平移,並不會影響到斜率(迴歸係數),僅會影響到截距
以圖形佐證
with(WOMEN,plot(weight~height,xlab="height",ylab="weight"))
with(WOMEN,plot(weight~height_centered,xlab="height_centered",ylab="weight"))
c(women)
## $height
## [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
##
## $weight
## [1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164
c(as.matrix(women))
## [1] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 115 117
## [18] 120 123 126 129 132 135 139 142 146 150 154 159 164
指令c(women)是要顯示women所有的物件,不論是數值或是變項名稱。而c(as.matrix(women))僅有擷取數值呈現而已。
help("birthwt")
從help(“birthwt”)內容可以看出Race是使用1,2,3來表白人、黑人、其它人種
c("white","black","other")[birthwt$race]
## [1] "black" "other" "white" "white" "white" "other" "white" "other"
## [9] "white" "white" "other" "other" "other" "other" "white" "white"
## [17] "black" "white" "other" "white" "other" "white" "white" "other"
## [25] "other" "white" "white" "white" "black" "black" "black" "white"
## [33] "black" "white" "black" "white" "white" "white" "white" "white"
## [41] "black" "white" "black" "white" "white" "white" "white" "other"
## [49] "white" "other" "white" "other" "white" "white" "other" "other"
## [57] "other" "other" "other" "other" "other" "other" "other" "white"
## [65] "other" "other" "other" "other" "white" "black" "white" "other"
## [73] "other" "black" "white" "black" "white" "white" "black" "white"
## [81] "white" "white" "other" "other" "other" "other" "other" "white"
## [89] "white" "white" "white" "other" "white" "white" "white" "white"
## [97] "white" "white" "white" "white" "white" "white" "other" "white"
## [105] "other" "black" "white" "white" "white" "black" "white" "other"
## [113] "white" "white" "white" "other" "white" "other" "white" "other"
## [121] "white" "other" "white" "white" "white" "white" "white" "white"
## [129] "white" "white" "other" "white" "black" "other" "other" "other"
## [137] "other" "black" "other" "white" "white" "white" "other" "other"
## [145] "white" "white" "black" "white" "other" "other" "other" "white"
## [153] "white" "white" "white" "other" "black" "white" "black" "other"
## [161] "white" "other" "other" "other" "black" "white" "other" "other"
## [169] "white" "white" "black" "black" "black" "other" "other" "white"
## [177] "white" "white" "white" "black" "other" "other" "white" "other"
## [185] "white" "other" "other" "black" "white"
上面code的是將birthwt中race這個變項的代號1,2,3分別帶入white,black,other。